IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220319873.html
   My bibliography  Save this article

Optimal design for the free-stream water wheel: A two-dimensional study

Author

Listed:
  • Cleynen, Olivier
  • Engel, Sebastian
  • Hoerner, Stefan
  • Thévenin, Dominique

Abstract

Free-stream water wheels running on floating river installations may contribute to hydropower production as part of a decentralized network meeting the highest ecological standards. While such devices are certainly not novel, their dynamics are complex and a need exists for an optimization of their power-producing characteristics. In this work, a parametrized two-dimensional computational fluid dynamics simulation is coupled to a genetic optimizer seeking to maximize the generated shaft power within a large domain of design parameters. Two objectives are pursued simultaneously: maximize the hydraulic efficiency, and maximize the power density of the device. After nearly 2000 individuals are evaluated, a Pareto front is identified; a family of designs is created to cover the trade-off between the two objectives. The results indicate that compared to operators constrained by the flow-exposed area, operators constrained by the rotor size would trade a 40% reduction in hydraulic performance in order to gain a 50% increase in power per unit rotor area. This optimization of the free-stream water wheel, the first in published literature to our knowledge, allows for the quantification of this trade-off and the publication of broadly-applicable design guidelines for the corresponding optimal blade geometry, number of blades, radius, and depth.

Suggested Citation

  • Cleynen, Olivier & Engel, Sebastian & Hoerner, Stefan & Thévenin, Dominique, 2021. "Optimal design for the free-stream water wheel: A two-dimensional study," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319873
    DOI: 10.1016/j.energy.2020.118880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220319873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    2. Nishi, Yasuyuki & Yahagi, Yuichiro & Okazaki, Takashi & Inagaki, Terumi, 2020. "Effect of flow rate on performance and flow field of an undershot cross-flow water turbine," Renewable Energy, Elsevier, vol. 149(C), pages 409-423.
    3. Cleynen, Olivier & Kerikous, Emeel & Hoerner, Stefan & Thévenin, Dominique, 2018. "Characterization of the performance of a free-stream water wheel using computational fluid dynamics," Energy, Elsevier, vol. 165(PB), pages 1392-1400.
    4. Kolekar, Nitin & Banerjee, Arindam, 2015. "Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects," Applied Energy, Elsevier, vol. 148(C), pages 121-133.
    5. Quaranta, Emanuele & Revelli, Roberto, 2015. "Performance characteristics, power losses and mechanical power estimation for a breastshot water wheel," Energy, Elsevier, vol. 87(C), pages 315-325.
    6. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape of thick blades for a hydraulic Savonius turbine," Renewable Energy, Elsevier, vol. 134(C), pages 629-638.
    7. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2011. "Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion," Energy, Elsevier, vol. 36(1), pages 438-446.
    8. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhishekkumar Shingala & Olivier Cleynen & Aman Jain & Stefan Hoerner & Dominique Thévenin, 2022. "Genetic Optimisation of a Free-Stream Water Wheel Using 2D Computational Fluid Dynamics Simulations Points towards Design with Fully Immersed Blades," Energies, MDPI, vol. 15(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cleynen, Olivier & Kerikous, Emeel & Hoerner, Stefan & Thévenin, Dominique, 2018. "Characterization of the performance of a free-stream water wheel using computational fluid dynamics," Energy, Elsevier, vol. 165(PB), pages 1392-1400.
    2. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    3. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    4. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    5. Abhishekkumar Shingala & Olivier Cleynen & Aman Jain & Stefan Hoerner & Dominique Thévenin, 2022. "Genetic Optimisation of a Free-Stream Water Wheel Using 2D Computational Fluid Dynamics Simulations Points towards Design with Fully Immersed Blades," Energies, MDPI, vol. 15(10), pages 1-20, May.
    6. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    7. Zia Ur Rehman & Saeed Badshah & Amer Farhan Rafique & Mujahid Badshah & Sakhi Jan & Muhammad Amjad, 2021. "Effect of a Support Tower on the Performance and Wake of a Tidal Current Turbine," Energies, MDPI, vol. 14(4), pages 1-13, February.
    8. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    9. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    10. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    11. Kang, Can & Zhao, Hexiang & Zhang, Yongchao & Ding, Kejin, 2021. "Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor," Renewable Energy, Elsevier, vol. 172(C), pages 290-303.
    12. Abdelaziz, Khaled R. & Nawar, Mohamed A.A. & Ramadan, Ahmed & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Performance improvement of a Savonius turbine by using auxiliary blades," Energy, Elsevier, vol. 244(PA).
    13. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    14. Nishi, Yasuyuki & Sato, Genki & Shiohara, Daishi & Inagaki, Terumi & Kikuchi, Norio, 2017. "Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field," Renewable Energy, Elsevier, vol. 112(C), pages 53-62.
    15. Ludovic Cassan & Guilhem Dellinger & Pascal Maussion & Nicolas Dellinger, 2021. "Hydrostatic Pressure Wheel for Regulation of Open Channel Networks and for the Energy Supply of Isolated Sites," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    16. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    17. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    18. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    19. Almoghayer, Mohammed A. & Woolf, David K. & Kerr, Sandy & Davies, Gareth, 2022. "Integration of tidal energy into an island energy system – A case study of Orkney islands," Energy, Elsevier, vol. 242(C).
    20. Ramadan, A. & Mohamed, M.H. & Marzok, S.Y. & Montasser, O.A. & El Feky, A. & El Baz, A.R., 2014. "An artificial generation of a few specific wave conditions: New simulator design and experimental performance," Energy, Elsevier, vol. 69(C), pages 309-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.