IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp182-200.html
   My bibliography  Save this article

Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study

Author

Listed:
  • Yousefi Tehrani, Mehran
  • Mirfarsi, Seyed Hesam
  • Rowshanzamir, Soosan

Abstract

Mechanical durability of hydrocarbon-based proton exchange membranes in long-term fuel cell operation is vital for their successful commercialization. Herein, a complex finite element model is developed that couples electrochemical performance of sulfonated poly(ether ether ketone) (SPEEK) membrane with its mechanical response at different operating conditions to predict the susceptible sites to mechanical failure. To this end, the impacts of cell voltage (0.1–0.9 V), operating temperature (30–80 °C) and backpressure (0.3–1.5 bar), inlet reactants relative humidity (30–100%), and clamping pressure (1–5 MPa) on hydration and consequently, stress and strain formation in the SPEEK membrane are investigated. Results suggest that SPEEK membrane, particularly at the channel outlet, undergoes the greatest swelling-induced degradation when the cell is running at low voltages, high temperature and backpressure values. Clamping pressure, however, imposes compressive stress and thinning upon the land region and is the dominant factor compared to hygrothermal swelling, albeit high hydration level shifts the maximum stress to the channel region. Despite superior resistance to different hygrothermal conditions and lower chance of thinning under the clamping pressure, Nafion membrane exhibits a relatively higher risk of wrinkle deformation under compression. This study provides insights into the mechanical response of hydrocarbon-based membranes under various fuel cell conditions.

Suggested Citation

  • Yousefi Tehrani, Mehran & Mirfarsi, Seyed Hesam & Rowshanzamir, Soosan, 2022. "Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study," Renewable Energy, Elsevier, vol. 184(C), pages 182-200.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:182-200
    DOI: 10.1016/j.renene.2021.11.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812101661X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Tsushima, S. & Teranishi, K. & Hirai, S., 2005. "Water diffusion measurement in fuel-cell SPE membrane by NMR," Energy, Elsevier, vol. 30(2), pages 235-245.
    3. Taymaz, Imdat & Benli, Merthan, 2010. "Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(5), pages 2134-2140.
    4. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
    5. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    4. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    7. Huang, Fuxiang & Qiu, Diankai & Xu, Zhutian & Peng, Linfa & Lai, Xinmin, 2021. "Analysis and improvement of flow distribution in manifold for proton exchange membrane fuel cell stacks," Energy, Elsevier, vol. 226(C).
    8. Cha, Dowon & Yang, Wonseok & Kim, Yongchan, 2019. "Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions," Energy, Elsevier, vol. 183(C), pages 514-524.
    9. Poornesh, K.K. & Cho, Chongdu & Kim, Do-Young & Tak, Yongsug, 2010. "Effect of gas-diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell," Energy, Elsevier, vol. 35(12), pages 5241-5249.
    10. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    11. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    12. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    13. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    14. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    15. Zhang, Xiuqin & Guo, Juncheng & Chen, Jincan, 2010. "The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching," Energy, Elsevier, vol. 35(12), pages 5294-5299.
    16. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    17. Qiu, Diankai & Peng, Linfa & Tang, Jiayu & Lai, Xinmin, 2020. "Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels," Energy, Elsevier, vol. 198(C).
    18. Qiu, Diankai & Zhou, Xiangyang & Chen, Minxue & Xu, Zhutian & Peng, Linfa, 2023. "Optimization of control strategy for air-cooled PEMFC based on in-situ observation of internal reaction state," Applied Energy, Elsevier, vol. 350(C).
    19. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    20. Huu Linh Nguyen & Jeasu Han & Xuan Linh Nguyen & Sangseok Yu & Young-Mo Goo & Duc Dung Le, 2021. "Review of the Durability of Polymer Electrolyte Membrane Fuel Cell in Long-Term Operation: Main Influencing Parameters and Testing Protocols," Energies, MDPI, vol. 14(13), pages 1-34, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:182-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.