IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p5241-5249.html
   My bibliography  Save this article

Effect of gas-diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell

Author

Listed:
  • Poornesh, K.K.
  • Cho, Chongdu
  • Kim, Do-Young
  • Tak, Yongsug

Abstract

In polymer electrolyte fuel cell (PEFC), gas-diffusion electrode (GDE) plays very significant role in force transmission from bipolar plate to the membrane. This paper investigates the effects of material heterogeneities of gas-diffusion electrode layer (gas-diffusion layer (GDL) and catalyst layer (CL)) on the assembly stress levels of single PEFC stack. In addition, we adopt a force transfer mechanism in a single fuel cell stack based on material heterogeneities of GDL and CL to understand the limitations and advantages associated with it through numerical analyses. Nanoscale heterogeneities in GDE are effectively implemented in the simulation cases along with the membrane swelling. Influence of presence or absence of CL interlayer in the numerical environment is found to have significant impact on the adjacent layers as well as interfaces.

Suggested Citation

  • Poornesh, K.K. & Cho, Chongdu & Kim, Do-Young & Tak, Yongsug, 2010. "Effect of gas-diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell," Energy, Elsevier, vol. 35(12), pages 5241-5249.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5241-5249
    DOI: 10.1016/j.energy.2010.07.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210004160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.07.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taymaz, Imdat & Benli, Merthan, 2010. "Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(5), pages 2134-2140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, Luhan & Lv, Weiqiang & Zhang, Kelvin H.L. & Wang, Xiaoning & Yan, Pengfei & Dickerson, James H. & He, Weidong, 2015. "A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries," Energy, Elsevier, vol. 83(C), pages 669-673.
    2. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    3. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    4. Ebrahimi, Sasan & Ghorbani, Babak & Vijayaraghavan, Krishna, 2017. "Optimization of catalyst distribution along PEMFC channel through a numerical two-phase model and genetic algorithm," Renewable Energy, Elsevier, vol. 113(C), pages 846-854.
    5. Boyaci San, Fatma Gül & Isik-Gulsac, Isil & Okur, Osman, 2013. "Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)," Energy, Elsevier, vol. 55(C), pages 1067-1075.
    6. Ren, Zhijun & Zhang, Dongming & Wang, Zaiyi, 2012. "Stacks with TiN/titanium as the bipolar plate for PEMFCs," Energy, Elsevier, vol. 48(1), pages 577-581.
    7. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousefi Tehrani, Mehran & Mirfarsi, Seyed Hesam & Rowshanzamir, Soosan, 2022. "Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study," Renewable Energy, Elsevier, vol. 184(C), pages 182-200.
    2. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    3. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    4. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    5. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    6. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    7. Yang, Meijun & Zhang, Dongming, 2014. "Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 64(C), pages 242-247.
    8. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    9. Zhang, Xiuqin & Guo, Juncheng & Chen, Jincan, 2010. "The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching," Energy, Elsevier, vol. 35(12), pages 5294-5299.
    10. Boyaci San, Fatma Gül & Isik-Gulsac, Isil & Okur, Osman, 2013. "Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)," Energy, Elsevier, vol. 55(C), pages 1067-1075.
    11. Atyabi, Seyed Ali & Afshari, Ebrahim & Wongwises, Somchai & Yan, Wen-Mon & Hadjadj, Abdellah & Shadloo, Mostafa Safdari, 2019. "Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances," Energy, Elsevier, vol. 179(C), pages 490-501.
    12. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    14. Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
    16. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    17. Keller, Nico & von Unwerth, Thomas, 2022. "Advanced parametric model for analysis of the influence of channel cross section dimensions and clamping pressure on current density distribution in PEMFC," Applied Energy, Elsevier, vol. 307(C).
    18. Ammar, M. & Chtourou, W. & Driss, Z. & Abid, M.S., 2011. "Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system," Energy, Elsevier, vol. 36(8), pages 5081-5093.
    19. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants," Energy, Elsevier, vol. 36(1), pages 119-132.
    20. Kariya, Tetsuro & Yanagimoto, Katsu & Funakubo, Hiroshi & Shudo, Toshio, 2015. "Effects of porous flow field type separators using sintered Ni-based alloy powders on interfacial contact resistances and fuel cell performances," Energy, Elsevier, vol. 87(C), pages 134-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5241-5249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.