IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v41y2012i1p508-513.html
   My bibliography  Save this article

Specific energy consumption of dynamic random access memory module supply chain in Taiwan

Author

Listed:
  • Chang, Cheng-Kuang
  • Hu, Shih-Cheng
  • Liu, Vincent
  • Chan, David Yi-Liang
  • Huang, Chin-Yi
  • Weng, Ling-Chia

Abstract

This study focuses on specific energy consumption (SEC) of all major energy consuming segments of the Dynamic Random Access Memory (DRAM) module supply chain, including 12” Si-wafer (ingot), wafer fabrication, integrated circuit (IC) assembly, IC testing, module assembly, and printed circuit board (PCB). Results show that energy consumption of a single unit of the end product from the DRAM supply chain is 4.67 kWh/PIC (PIC = a piece of DRAM module). For its annual shipments of 85,136,366 PIC/yr, the whole DRAM supply chain consumes a total of 397,331,726 kWh of energy, emitting 252,703 tons of CO2. The outcomes of this study provide baseline SEC of the DRAM supply chain that can be used while designing fabrication plants (hereafter referred to as “fabs”) in the future. We estimate that if all fabs in Taiwan achieve the same level of SEC as the best performer (i.e. lowest SEC level), annual energy savings and emissions reduction in Taiwan could be expected to reach 228,561,645 kWh of electricity and 149,426 tons of CO2 emissions, respectively.

Suggested Citation

  • Chang, Cheng-Kuang & Hu, Shih-Cheng & Liu, Vincent & Chan, David Yi-Liang & Huang, Chin-Yi & Weng, Ling-Chia, 2012. "Specific energy consumption of dynamic random access memory module supply chain in Taiwan," Energy, Elsevier, vol. 41(1), pages 508-513.
  • Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:508-513
    DOI: 10.1016/j.energy.2012.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, S.-C. & Chuah, Y.K., 2003. "Power consumption of semiconductor fabs in Taiwan," Energy, Elsevier, vol. 28(8), pages 895-907.
    2. Hu, Shih-Cheng & Xu, Tengfang & Chaung, Tony & Chan, David Y.-L., 2010. "Characterization of energy use in 300 mm DRAM (Dynamic Random Access Memory) wafer fabrication plants (fabs) in Taiwan," Energy, Elsevier, vol. 35(9), pages 3788-3792.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsin-Chieh Wu & Horng-Ren Tsai & Tin-Chih Toly Chen & Keng-Wei Hsu, 2021. "Energy-Efficient Production Planning Using a Two-Stage Fuzzy Approach," Mathematics, MDPI, vol. 9(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Suk Jo & Jang-Hoon Shin & Won-Jun Kim & Jae-Weon Jeong, 2017. "Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    3. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    4. Foo, Dominic C.Y. & Ng, Denny K.S. & Leong, Malwynn K.Y. & Chew, Irene M.L. & Subramaniam, Mahendran & Aziz, Ramlan & Lee, Jui-Yuan, 2014. "Targeting and design of chilled water network," Applied Energy, Elsevier, vol. 134(C), pages 589-599.
    5. Armin Ibitz, 2020. "Assessing Taiwan’s endeavors towards a circular economy: the electronics sector," Asia Europe Journal, Springer, vol. 18(4), pages 493-510, December.
    6. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.
    7. Chang, Yung-Chung, 2006. "An innovative approach for demand side management—optimal chiller loading by simulated annealing," Energy, Elsevier, vol. 31(12), pages 1883-1896.
    8. Cheng-Kuang Chang & Tee Lin & Shih-Cheng Hu & Ben-Ran Fu & Jung-Sheng Hsu, 2016. "Various Energy-Saving Approaches to a TFT-LCD Panel Fab," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
    9. Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
    10. Hu, Shih-Cheng & Xu, Tengfang & Chaung, Tony & Chan, David Y.-L., 2010. "Characterization of energy use in 300 mm DRAM (Dynamic Random Access Memory) wafer fabrication plants (fabs) in Taiwan," Energy, Elsevier, vol. 35(9), pages 3788-3792.
    11. Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
    12. Gao, Wei & Feng, Xiao, 2017. "The power target of a fluid machinery network in a circulating water system," Applied Energy, Elsevier, vol. 205(C), pages 847-854.
    13. Hsin-Chieh Wu & Horng-Ren Tsai & Tin-Chih Toly Chen & Keng-Wei Hsu, 2021. "Energy-Efficient Production Planning Using a Two-Stage Fuzzy Approach," Mathematics, MDPI, vol. 9(10), pages 1-17, May.
    14. Mieczysław Porowski & Monika Jakubiak, 2022. "Energy-Optimal Structures of HVAC System for Cleanrooms as a Function of Key Constant Parameters and External Climate," Energies, MDPI, vol. 15(1), pages 1-41, January.
    15. Chang, Yung-Chung & Chen, Wu-Hsing, 2009. "Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy," Energy, Elsevier, vol. 34(4), pages 448-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:508-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.