IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i8p3131-3142.html
   My bibliography  Save this article

Voltage stabilization of VSI SMES capacitors and voltage sag compensation by SMES using novel switching strategies

Author

Listed:
  • Mohammad Reza, Alizadeh Pahlavani
  • Hossine Ali, Mohammadpour
  • Abbas, Shoulaie

Abstract

This paper presents a novel and optimized switching strategy and control approach for a three-level two-quadrant chopper in a three-level Neutral point clamped (NPC) voltage source inverter (VSI) superconducting magnetic energy storage (SMES). Using the proposed switching strategy, the voltage of the inverter capacitors in SMES can be independently controlled; also, the minimum power and switching losses – as well as the proper convection – can be achieved using this same strategy. The simulation results indicate that when combined with a proportional-integral (PI) control approach the proposed switching strategy can be easily implemented in the power networks and can balance and stabilize the multi-level inverters’ capacitor voltage level. The voltage variation of the capacitors in the steady state condition is less than (0.062%) which is 15 times better than the IEEE standard requirement (1%). To investigate the effectiveness and reliability of the proposed approach in stabilizing capacitor voltage, SMES performance using the presented approach is compared with that of SMES when the capacitors of the three-level inverter are replaced with equal and ideal voltage sources. This comparison is carried out from the power-quality point of view and it is shown that the proposed switching strategy with a PI controller is highly reliable. Considering that the Space Vector Pulse Width Modulation (SVPWM) is highly effective in decreasing low order harmonics (LOH), this article utilizes this type of modulation when it is combined with the most optimized switching strategy.

Suggested Citation

  • Mohammad Reza, Alizadeh Pahlavani & Hossine Ali, Mohammadpour & Abbas, Shoulaie, 2010. "Voltage stabilization of VSI SMES capacitors and voltage sag compensation by SMES using novel switching strategies," Energy, Elsevier, vol. 35(8), pages 3131-3142.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3131-3142
    DOI: 10.1016/j.energy.2010.02.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421000112X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.02.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massoud Amin, S. & Gellings, Clark W., 2006. "The North American power delivery system: Balancing market restructuring and environmental economics with infrastructure security," Energy, Elsevier, vol. 31(6), pages 967-999.
    2. van der Linden, Septimus, 2006. "Bulk energy storage potential in the USA, current developments and future prospects," Energy, Elsevier, vol. 31(15), pages 3446-3457.
    3. Saxe, M. & Folkesson, A. & Alvfors, P., 2008. "Energy system analysis of the fuel cell buses operated in the project: Clean Urban Transport for Europe," Energy, Elsevier, vol. 33(5), pages 689-711.
    4. Rebut, P.H., 1993. "Perspectives on nuclear fusion," Energy, Elsevier, vol. 18(10), pages 1023-1031.
    5. LaCommare, Kristina Hamachi & Eto, Joseph H., 2006. "Cost of power interruptions to electricity consumers in the United States (US)," Energy, Elsevier, vol. 31(12), pages 1845-1855.
    6. Hung-po Chao,, 2006. "Global electricity transformation: The critical need for integrated market design and risk management research," Energy, Elsevier, vol. 31(6), pages 923-939.
    7. Boukettaya, Ghada & Krichen, Lotfi & Ouali, Abderrazak, 2010. "A comparative study of three different sensorless vector control strategies for a Flywheel Energy Storage System," Energy, Elsevier, vol. 35(1), pages 132-139.
    8. Cambel, A.B. & Koomanoff, F.A., 1989. "High-temperature superconductors and CO2 emissions," Energy, Elsevier, vol. 14(6), pages 309-322.
    9. Nomura, Shinichi & Watanabe, Naruaki & Suzuki, Chisato & Ajikawa, Hiroki & Uyama, Michio & Kajita, Shinya & Ohata, Yoshihiro & Tsutsui, Hiroaki & Tsuji-Iio, Shunji & Shimada, Ryuichi, 2005. "Advanced configuration of superconducting magnetic energy storage," Energy, Elsevier, vol. 30(11), pages 2115-2127.
    10. Qader, M.R., 2006. "Optimal location of advanced static VAR compensator (ASVC) applied to non-linear load model," Energy, Elsevier, vol. 31(12), pages 1761-1768.
    11. Varghese, Philip & Tam, Kwa-Sur, 1990. "Structures for superconductive magnetic energy storage," Energy, Elsevier, vol. 15(10), pages 873-884.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Jing & Xu, Ying & Liao, Meng & Guo, Shuqiang & Li, Yuanyuan & Ren, Li & Su, Rongyu & Li, Shujian & Zhou, Xiao & Tang, Yuejin, 2019. "Integrated design method for superconducting magnetic energy storage considering the high frequency pulse width modulation pulse voltage on magnet," Applied Energy, Elsevier, vol. 248(C), pages 1-17.
    2. Biswas (Raha), Syamasree & Mandal, Kamal Krishna & Chakraborty, Niladri, 2016. "Pareto-efficient double auction power transactions for economic reactive power dispatch," Applied Energy, Elsevier, vol. 168(C), pages 610-627.
    3. Ventosa-Cutillas, Antonio & Montero-Robina, Pablo & Cuesta, Federico & Gordillo, Francisco, 2020. "A simple modulation approach for interfacing three-level Neutral-Point-Clamped converters to the grid," Energy, Elsevier, vol. 205(C).
    4. Zhu, Jiahui & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Lai, Xiaokang & Yuan, Weijia, 2013. "Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid," Energy, Elsevier, vol. 51(C), pages 184-192.
    5. Li, Jianwei & Wang, Xudong & Zhang, Zhenyu & Le Blond, Simon & Yang, Qingqing & Zhang, Min & Yuan, Weijia, 2017. "Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems," Applied Energy, Elsevier, vol. 187(C), pages 169-179.
    6. Leon, A.E. & Solsona, J.A. & Figueroa, J.L. & Valla, M.I., 2011. "Optimization with constraints for excitation control in synchronous generators," Energy, Elsevier, vol. 36(8), pages 5366-5373.
    7. Pouresmaeil, Edris & Gomis-Bellmunt, Oriol & Montesinos-Miracle, Daniel & Bergas-Jané, Joan, 2011. "Multilevel converters control for renewable energy integration to the power grid," Energy, Elsevier, vol. 36(2), pages 950-963.
    8. Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Reza, Alizadeh Pahlavani & Ali, Mohammadpour Hossine, 2010. "An optimized SVPWM switching strategy for three-level NPC VSI and a novel switching strategy for three-level two-quadrant chopper to stabilize the voltage of capacitors," Energy, Elsevier, vol. 35(12), pages 4917-4931.
    2. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    3. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    4. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    5. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    6. Odin Foldvik Eikeland & Filippo Maria Bianchi & Inga Setså Holmstrand & Sigurd Bakkejord & Sergio Santos & Matteo Chiesa, 2022. "Uncovering Contributing Factors to Interruptions in the Power Grid: An Arctic Case," Energies, MDPI, vol. 15(1), pages 1-21, January.
    7. Anu Narayanan & M. Granger Morgan, 2012. "Sustaining Critical Social Services During Extended Regional Power Blackouts," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1183-1193, July.
    8. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
    9. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    10. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    11. He, Qing & Li, Guoqing & Lu, Chang & Du, Dongmei & Liu, Wenyi, 2019. "A compressed air energy storage system with variable pressure ratio and its operation control," Energy, Elsevier, vol. 169(C), pages 881-894.
    12. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    13. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    14. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    15. Majid Hashemi & Glenn Jenkins, 2021. "The Economic Benefits of Mitigating the Risk of Unplanned Power Outages," Working Paper 1468, Economics Department, Queen's University.
    16. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    17. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    18. Esmaili, Masoud & Shayanfar, Heidar Ali & Amjady, Nima, 2009. "Multi-objective congestion management incorporating voltage and transient stabilities," Energy, Elsevier, vol. 34(9), pages 1401-1412.
    19. Praktiknjo, Aaron J., 2014. "Stated preferences based estimation of power interruption costs in private households: An example from Germany," Energy, Elsevier, vol. 76(C), pages 82-90.
    20. Xavier Labandeira & Baltazar Manzano, 2012. "Some Economic Aspects of Energy Security," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 47-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3131-3142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.