IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i3p1482-1490.html
   My bibliography  Save this article

An analysis of future building energy use in subtropical Hong Kong

Author

Listed:
  • Lam, Joseph C.
  • Wan, Kevin K.W.
  • Lam, Tony N.T.
  • Wong, S.L.

Abstract

Principal component analysis of prevailing weather conditions in subtropical Hong Kong was conducted, and a new climatic index Z (as a function of the dry-bulb temperature, wet-bulb temperature and global solar radiation) determined for past (1979–2008, measurements made at local meteorological station) and future (2009–2100, predictions from general circulation models) years. Multi-year (1979–2008) building energy simulations were carried out for a generic office building. It was found that Z exhibited monthly and seasonal variations similar to the simulated cooling/heating loads and building energy use. Regression models were developed to correlate the simulated monthly building cooling loads and total energy use with the corresponding Z. Error analysis indicated that annual building energy use from the regression models were very close to the simulated values; the difference was about 1%. Difference in individual monthly cooling load and energy use, however, could be up to 4%. It was also found that both the DOE-simulated results during 1979–2008 and the regression-predicted data during 2009–2100 indicated an increasing trend in annual cooling load and energy use and a gradual reduction in the already insignificant heating requirement in cooling-dominated office buildings in subtropical climates.

Suggested Citation

  • Lam, Joseph C. & Wan, Kevin K.W. & Lam, Tony N.T. & Wong, S.L., 2010. "An analysis of future building energy use in subtropical Hong Kong," Energy, Elsevier, vol. 35(3), pages 1482-1490.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1482-1490
    DOI: 10.1016/j.energy.2009.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209005258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Joseph C. & Wan, Kevin K.W. & Wong, S.L. & Lam, Tony N.T., 2010. "Long-term trends of heat stress and energy use implications in subtropical climates," Applied Energy, Elsevier, vol. 87(2), pages 608-612, February.
    2. Lam, Joseph C., 1995. "Building envelope loads and commercial sector electricity use in Hong Kong," Energy, Elsevier, vol. 20(3), pages 189-194.
    3. Lam, Joseph C. & Tang, H.L. & Li, Danny H.W., 2008. "Seasonal variations in residential and commercial sector electricity consumption in Hong Kong," Energy, Elsevier, vol. 33(3), pages 513-523.
    4. Lam, Joseph C. & Wan, Kevin K.W. & Cheung, K.L., 2009. "An analysis of climatic influences on chiller plant electricity consumption," Applied Energy, Elsevier, vol. 86(6), pages 933-940, June.
    5. Wan, Kevin K.W. & Cheung, K.L. & Yang, Liu & Lam, Joseph C., 2009. "A new variable for climate change study and implications for the built environment," Renewable Energy, Elsevier, vol. 34(3), pages 916-919.
    6. Lam, J.C. & Ng, A.K.W., 1994. "Energy consumption in Hong Kong," Energy, Elsevier, vol. 19(11), pages 1157-1164.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olonscheck, Mady & Walther, Carsten & Lüdeke, Matthias & Kropp, Jürgen P., 2015. "Feasibility of energy reduction targets under climate change: The case of the residential heating energy sector of the Netherlands," Energy, Elsevier, vol. 90(P1), pages 560-569.
    2. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    3. Kamel, Ehsan & Sheikh, Shaya & Huang, Xueqing, 2020. "Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days," Energy, Elsevier, vol. 206(C).
    4. Yang, Liu & Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "A new method to develop typical weather years in different climates for building energy use studies," Energy, Elsevier, vol. 36(10), pages 6121-6129.
    5. Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
    6. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    7. Kang, Jing & Wang, Shengwei, 2018. "Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations," Applied Energy, Elsevier, vol. 231(C), pages 615-627.
    8. He, Hongming & Jim, C.Y., 2012. "Coupling model of energy consumption with changes in environmental utility," Energy Policy, Elsevier, vol. 43(C), pages 235-243.
    9. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    10. Hong, Tianzhen & Chang, Wen-Kuei & Lin, Hung-Wen, 2013. "A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data," Applied Energy, Elsevier, vol. 111(C), pages 333-350.
    11. Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "Assessment of climate change impact on building energy use and mitigation measures in subtropical climates," Energy, Elsevier, vol. 36(3), pages 1404-1414.
    12. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    14. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    15. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    16. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    17. Klein, Daniel R. & Olonscheck, Mady & Walther, Carsten & Kropp, Jürgen P., 2013. "Susceptibility of the European electricity sector to climate change," Energy, Elsevier, vol. 59(C), pages 183-193.
    18. Niu, Shu-wen & Li, Yi-xin & Ding, Yong-xia & Qin, Jing, 2010. "Energy demand for rural household heating to suitable levels in the Loess Hilly Region, Gansu Province, China," Energy, Elsevier, vol. 35(5), pages 2070-2078.
    19. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lam, Tony N.T. & Wan, Kevin K.W. & Wong, S.L. & Lam, Joseph C., 2010. "Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(7), pages 2321-2327, July.
    2. Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "Assessment of climate change impact on building energy use and mitigation measures in subtropical climates," Energy, Elsevier, vol. 36(3), pages 1404-1414.
    3. Sheng, Weili & Zhang, Lin & Ridley, Ian, 2020. "The impact of minimum OTTV legislation on building energy consumption," Energy Policy, Elsevier, vol. 136(C).
    4. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    5. Yang, Liu & Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "A new method to develop typical weather years in different climates for building energy use studies," Energy, Elsevier, vol. 36(10), pages 6121-6129.
    6. Moral-Carcedo, Julián & Pérez-García, Julián, 2015. "Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain," Applied Energy, Elsevier, vol. 142(C), pages 407-425.
    7. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    8. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    9. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    10. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    11. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    13. Fullerton, Thomas M. & Juarez, David A. & Walke, Adam G., 2012. "Residential electricity consumption in Seattle," Energy Economics, Elsevier, vol. 34(5), pages 1693-1699.
    14. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    15. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    16. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    17. Mao, Ning & Song, Mengjie & Deng, Shiming, 2016. "Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort," Applied Energy, Elsevier, vol. 180(C), pages 536-545.
    18. Wai-Ming To & Peter K. C. Lee, 2017. "Energy Consumption and Economic Development in Hong Kong, China," Energies, MDPI, vol. 10(11), pages 1-13, November.
    19. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    20. Jovanović, Saša & Savić, Slobodan & Bojić, Milorad & Djordjević, Zorica & Nikolić, Danijela, 2015. "The impact of the mean daily air temperature change on electricity consumption," Energy, Elsevier, vol. 88(C), pages 604-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1482-1490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.