IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p964-975.html
   My bibliography  Save this article

Risk-based decision making method for maintenance policy selection of thermal power plant equipment

Author

Listed:
  • Carazas, F.G.
  • Souza, G.F.M.

Abstract

This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement.

Suggested Citation

  • Carazas, F.G. & Souza, G.F.M., 2010. "Risk-based decision making method for maintenance policy selection of thermal power plant equipment," Energy, Elsevier, vol. 35(2), pages 964-975.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:964-975
    DOI: 10.1016/j.energy.2009.06.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209002722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.06.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Mansour, Fouad & Kožuh, Mitja, 2007. "Risk analysis for CHP decision making within the conditions of an open electricity market," Energy, Elsevier, vol. 32(10), pages 1905-1916.
    2. Frangopoulos, Christos A. & Dimopoulos, George G., 2004. "Effect of reliability considerations on the optimal synthesis, design and operation of a cogeneration system," Energy, Elsevier, vol. 29(3), pages 309-329.
    3. Eti, M.C. & Ogaji, S.O.T. & Probert, S.D., 2007. "Integrating reliability, availability, maintainability and supportability with risk analysis for improved operation of the Afam thermal power-station," Applied Energy, Elsevier, vol. 84(2), pages 202-221, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Mac Cawley & Maximiliano Cubillos & Rodrigo Pascual, 2020. "A real options approach for joint overhaul and replacement strategies with mean reverting prices," Annals of Operations Research, Springer, vol. 286(1), pages 303-324, March.
    2. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    3. Muhammad Zubair & Gyunyoung Heo, 2013. "Advancement in living probabilistic safety assessment to increase safety of nuclear power plants," Journal of Risk and Reliability, , vol. 227(5), pages 534-539, October.
    4. Yuyama, Ayumi & Kajitani, Yoshio & Shoji, Gaku, 2018. "Simulation of operational reliability of thermal power plants during a power crisis: Are we underestimating power shortage risk?," Applied Energy, Elsevier, vol. 231(C), pages 901-913.
    5. Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
    6. Carnero, María Carmen & Gómez, Andrés, 2017. "Maintenance strategy selection in electric power distribution systems," Energy, Elsevier, vol. 129(C), pages 255-272.
    7. Rusin, Andrzej & Wojaczek, Adam, 2019. "Improving the availability and lengthening the life of power unit elements through the use of risk-based maintenance planning," Energy, Elsevier, vol. 180(C), pages 28-35.
    8. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    9. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    10. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Li, Wanhong & Liu, Guangzhong, 2022. "Dynamic failure mode analysis approach based on an improved Taguchi process capability index," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
    13. Rusin, Andrzej & Bieniek, Michał, 2017. "Maintenance planning of power plant elements based on avoided risk value," Energy, Elsevier, vol. 134(C), pages 672-680.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Sau Man & Hui, Chi Wai, 2009. "Feasibility and flexibility for a trigeneration system," Energy, Elsevier, vol. 34(10), pages 1693-1704.
    2. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    3. Carazas, F.J.G. & Salazar, C.H. & Souza, G.F.M., 2011. "Availability analysis of heat recovery steam generators used in thermal power plants," Energy, Elsevier, vol. 36(6), pages 3855-3870.
    4. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    5. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    6. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2018. "A systematic approach to evaluate the economic viability of Combined Cooling Heating and Power systems over conventional technologies," Energy, Elsevier, vol. 148(C), pages 283-295.
    7. Postnikov, Ivan & Stennikov, Valery & Mednikova, Ekaterina & Penkovskii, Andrey, 2018. "Methodology for optimization of component reliability of heat supply systems," Applied Energy, Elsevier, vol. 227(C), pages 365-374.
    8. Badami, M. & Camillieri, F. & Portoraro, A. & Vigliani, E., 2014. "Energetic and economic assessment of cogeneration plants: A comparative design and experimental condition study," Energy, Elsevier, vol. 71(C), pages 255-262.
    9. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    10. Compernolle, Tine & Witters, Nele & Van Passel, Steven & Thewys, Theo, 2011. "Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions," Energy, Elsevier, vol. 36(4), pages 1940-1947.
    11. Cortés, E. & Rivera, W., 2010. "Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer," Energy, Elsevier, vol. 35(3), pages 1289-1299.
    12. Yuyama, Ayumi & Kajitani, Yoshio & Shoji, Gaku, 2018. "Simulation of operational reliability of thermal power plants during a power crisis: Are we underestimating power shortage risk?," Applied Energy, Elsevier, vol. 231(C), pages 901-913.
    13. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    14. Ersoz, Ibrahim & Colak, Uner, 2016. "Combined cooling, heat and power planning under uncertainty," Energy, Elsevier, vol. 109(C), pages 1016-1025.
    15. Wu, Jingyi & Yu, Yang & Yu, Jianxing & Chang, Xueying & Xu, Lixin & Zhang, Wenhao, 2023. "A Markov resilience assessment framework for tension leg platform under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Jesse G. Wales & Alexander J. Zolan & William T. Hamilton & Alexandra M. Newman & Michael J. Wagner, 2023. "Combining simulation and optimization to derive operating policies for a concentrating solar power plant," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 119-150, March.
    17. Wang, Jiang-Jiang & Fu, Chao & Yang, Kun & Zhang, Xu-Tao & Shi, Guo-hua & Zhai, John, 2013. "Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system," Energy, Elsevier, vol. 61(C), pages 531-540.
    18. Ceglia, F. & Marrasso, E. & Pallotta, G. & Roselli, C. & Sasso, M., 2023. "Assessing the influence of time-dependent power grid efficiency indicators on primary energy savings and economic incentives for high-efficiency cogeneration," Energy, Elsevier, vol. 278(PB).
    19. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    20. Toffolo, Andrea & Lazzaretto, Andrea & Morandin, Matteo, 2010. "The HEATSEP method for the synthesis of thermal systems: An application to the S-Graz cycle," Energy, Elsevier, vol. 35(2), pages 976-981.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:964-975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.