IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i3p1289-1299.html
   My bibliography  Save this article

Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer

Author

Listed:
  • Cortés, E.
  • Rivera, W.

Abstract

Energy conservation is a central concern of the current industrial world, where increasing efficient energy usage is the only way of reducing a high energy demand. In the present study the optimization of a pulp and paper mill with a cogeneration plant has been carried out. The optimization was realized with a methodology which includes exergy, exergoeconomics, thermoeconomics and pinch analysis. The proposed methodology was useful in determining not only the best plant operating conditions but also establishing the components or subsystems with the highest irreversibilities. As a result of the study, operation changes in the recovery boiler, the turbogenerator, the thermal treatment and the deaerator were realized. Due to the higher irreversibility in the actual evaporator line, a new line of evaporators was proposed. Also, an innovative heat recycling technology as to the use of heat transformers was proposed in order to reduce waste heat discharged to the atmosphere. The results obtained with the proposed methodology, which integrates the different optimization methods, allowed reaching higher efficiencies and lower operational costs than those obtained with the optimization methods working separately.

Suggested Citation

  • Cortés, E. & Rivera, W., 2010. "Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer," Energy, Elsevier, vol. 35(3), pages 1289-1299.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1289-1299
    DOI: 10.1016/j.energy.2009.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420900485X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, Márcio Macedo & Schaeffer, Roberto & Worrell, Ernst, 2001. "Exergy accounting of energy and materials flows in steel production systems," Energy, Elsevier, vol. 26(4), pages 363-384.
    2. Hua, B. & Chen, Q.L. & Wang, P., 1997. "A new exergoeconomic approach for analysis and optimization of energy systems," Energy, Elsevier, vol. 22(11), pages 1071-1078.
    3. Cardona, E. & Piacentino, A., 2006. "A new approach to exergoeconomic analysis and design of variable demand energy systems," Energy, Elsevier, vol. 31(4), pages 490-515.
    4. Uran, V., 2006. "Optimization system for combined heat and electricity production in the wood-processing industry," Energy, Elsevier, vol. 31(14), pages 2996-3016.
    5. Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
    6. Frangopoulos, Christos A. & Dimopoulos, George G., 2004. "Effect of reliability considerations on the optimal synthesis, design and operation of a cogeneration system," Energy, Elsevier, vol. 29(3), pages 309-329.
    7. Gassner, M. & Maréchal, F., 2008. "Thermo-economic optimisation of the integration of electrolysis in synthetic natural gas production from wood," Energy, Elsevier, vol. 33(2), pages 189-198.
    8. Rivero, Ricardo, 2001. "Exergy simulation and optimization of adiabatic and diabatic binary distillation," Energy, Elsevier, vol. 26(6), pages 561-593.
    9. Peng, T. & Lu, H.F. & Wu, W.L. & Campbell, D.E. & Zhao, G.S. & Zou, J.H. & Chen, J., 2008. "Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP," Energy, Elsevier, vol. 33(3), pages 437-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akisawa, Atsushi & Miyazaki, Takahiko & Kashiwagi, Takao, 2010. "Theoretical analysis of the optimal configuration of co-generation systems and competitiveness of heating/cooling technologies," Energy, Elsevier, vol. 35(10), pages 4071-4078.
    2. Ali, Ramadan Hefny & Abdel Samee, Ahmed A. & Maghrabie, Hussein M., 2023. "Exergoeconomic assessment of a cogeneration pulp and paper plant under bi-operating modes," Applied Energy, Elsevier, vol. 351(C).
    3. Hernández-Magallanes, J.A. & Heard, C.L. & Best, R. & Rivera, W., 2018. "Modeling of a new absorption heat pump-transformer used to produce heat and power simultaneously," Energy, Elsevier, vol. 165(PA), pages 112-133.
    4. Coronado, Christian Rodriguez & Tuna, Celso Eduardo & Zanzi, Rolando & Vane, Lucas F. & Silveira, José Luz, 2014. "Development of a thermoeconomic methodology for optimizing biodiesel production. Part II: Manufacture exergetic cost and biodiesel production cost incorporating carbon credits, a Brazilian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 565-572.
    5. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    6. Ali, Ramadan Hefny & Abdel Samee, Ahmed A. & Maghrabie, Hussein M., 2023. "Thermodynamic analysis of a cogeneration system in pulp and paper industry under singular and hybrid operating modes," Energy, Elsevier, vol. 263(PE).
    7. Donnellan, Philip & Byrne, Edmond & Oliveira, Jorge & Cronin, Kevin, 2014. "First and second law multidimensional analysis of a triple absorption heat transformer (TAHT)," Applied Energy, Elsevier, vol. 113(C), pages 141-151.
    8. Rivera, W. & Huicochea, A. & Martínez, H. & Siqueiros, J. & Juárez, D. & Cadenas, E., 2011. "Exergy analysis of an experimental heat transformer for water purification," Energy, Elsevier, vol. 36(1), pages 320-327.
    9. Donnellan, Philip & Cronin, Kevin & Acevedo, Yaset & Byrne, Edmond, 2014. "Economic evaluation of an industrial high temperature lift heat transformer," Energy, Elsevier, vol. 73(C), pages 581-591.
    10. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    11. Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
    12. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
    13. Gürtürk, Mert & Oztop, Hakan F. & Hepbasli, Arif, 2015. "Comparison of exergoeconomic analysis of two different perlite expansion furnaces," Energy, Elsevier, vol. 80(C), pages 589-598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    2. Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
    3. Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
    4. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    5. Dimopoulos, George G. & Kougioufas, Aristotelis V. & Frangopoulos, Christos A., 2008. "Synthesis, design and operation optimization of a marine energy system," Energy, Elsevier, vol. 33(2), pages 180-188.
    6. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    7. Nguyen, Nghi & Demirel, Yaşar, 2010. "Retrofit of distillation columns in biodiesel production plants," Energy, Elsevier, vol. 35(4), pages 1625-1632.
    8. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    9. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    10. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    11. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    12. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    13. Hidalgo, Ignacio & Szabo, Laszlo & Carlos Ciscar, Juan & Soria, Antonio, 2005. "Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model," Energy, Elsevier, vol. 30(5), pages 583-610.
    14. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    15. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    16. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
    17. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    18. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    19. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    20. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1289-1299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.