IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i4p490-515.html
   My bibliography  Save this article

A new approach to exergoeconomic analysis and design of variable demand energy systems

Author

Listed:
  • Cardona, E.
  • Piacentino, A.

Abstract

Exergoeconomics is an attractive research field regarding the optimisation of design and operability where complex energy systems are concerned. The different approaches to thermoeconomics can easily achieve optimal or near-optimal solutions for the design of energy systems in industrial applications, characterised by regular energy demand profiles; for applications in buildings, however, the great number of components operating at unsteady conditions due to the demand variability make these methodologies hard to use. Furthermore, in project phases of complex plants such as Combined Heat and Power (CHP) or Combined Heat Cooling and Power (CHCP), energy demand can be satisfied with different output shares among the various components. In this paper, a simplified exergo-economic methodology is presented, which is based on aggregate consumption data and on a case-oriented procedure for analysis simplification. A technique to internalise exergy flows between the considered energy system and other external systems is also introduced. The proposed approach was applied to a trigeneration plant serving a 300-bed hospital situated in a Mediterranean area; the obtained results were finally compared with the optimal solution previously determined by means of demand cumulative curves and plant running simulations.

Suggested Citation

  • Cardona, E. & Piacentino, A., 2006. "A new approach to exergoeconomic analysis and design of variable demand energy systems," Energy, Elsevier, vol. 31(4), pages 490-515.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:4:p:490-515
    DOI: 10.1016/j.energy.2005.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205000769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, Georgios & Winhold, Michael, 1985. "Exergoeconomic analysis and evaluation of energy-conversion plants—I. A new general methodology," Energy, Elsevier, vol. 10(1), pages 69-80.
    2. Tsatsaronis, George & Pisa, Javier, 1994. "Exergoeconomic evaluation and optimization of energy systems — application to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 287-321.
    3. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    4. Kim, Si-Moon & Oh†, Si-Doek & Kwon, Yong-Ho & Kwak, Ho-Young, 1998. "Exergoeconomic analysis of thermal systems," Energy, Elsevier, vol. 23(5), pages 393-406.
    5. Hua, B. & Chen, Q.L. & Wang, P., 1997. "A new exergoeconomic approach for analysis and optimization of energy systems," Energy, Elsevier, vol. 22(11), pages 1071-1078.
    6. Frangopoulos, Christos A., 1994. "Application of the thermoeconomic functional approach to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 323-342.
    7. Frangopoulos, Christos A., 1988. "Functional decomposition for optimal design of complex thermal systems," Energy, Elsevier, vol. 13(3), pages 239-244.
    8. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    9. Tsatsaronis, Georgios & Winhold, Michael, 1985. "Exergoeconomic analysis and evaluation of energy-conversion plants—II. Analysis of a coal-fired steam power plant," Energy, Elsevier, vol. 10(1), pages 81-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    2. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.
    3. Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
    4. Sangi, Roozbeh & Martín, Paula Martínez & Müller, Dirk, 2016. "Thermoeconomic analysis of a building heating system," Energy, Elsevier, vol. 111(C), pages 351-363.
    5. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    6. Cortés, E. & Rivera, W., 2010. "Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer," Energy, Elsevier, vol. 35(3), pages 1289-1299.
    7. Maes, Dries & Van Passel, Steven, 2012. "Interference of regional support policies on the economic and environmental performance of a hybrid cogeneration-solar panel energy system," Energy Policy, Elsevier, vol. 42(C), pages 670-680.
    8. Bilgili, Faik, 2006. "A Dynamic Approach to Demand for Energy in Turkey," MPRA Paper 24038, University Library of Munich, Germany.
    9. Schicktanz, M.D. & Wapler, J. & Henning, H.-M., 2011. "Primary energy and economic analysis of combined heating, cooling and power systems," Energy, Elsevier, vol. 36(1), pages 575-585.
    10. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    11. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    12. Ondeck, Abigail & Edgar, Thomas F. & Baldea, Michael, 2017. "A multi-scale framework for simultaneous optimization of the design and operating strategy of residential CHP systems," Applied Energy, Elsevier, vol. 205(C), pages 1495-1511.
    13. Lai, Sau Man & Hui, Chi Wai, 2010. "Integration of trigeneration system and thermal storage under demand uncertainties," Applied Energy, Elsevier, vol. 87(9), pages 2868-2880, September.
    14. Meinel, Dominik & Wieland, Christoph & Spliethoff, Hartmut, 2014. "Economic comparison of ORC (Organic Rankine cycle) processes at different scales," Energy, Elsevier, vol. 74(C), pages 694-706.
    15. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    16. Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
    17. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    2. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    3. Guelpa, Elisa & Verda, Vittorio, 2020. "Exergoeconomic analysis for the design improvement of supercritical CO2 cycle in concentrated solar plant," Energy, Elsevier, vol. 206(C).
    4. Cardona, E. & Piacentino, A., 2009. "Optimal design of CHCP plants in the civil sector by thermoeconomics," Applied Energy, Elsevier, vol. 84(7-8), pages 729-748, July.
    5. Oh, Si-Doek & Lee, Yeji & Yoo, Yungpil & Kim, Jinoh & Kim, Suyong & Song, Seung Jin & Kwak, Ho-Young, 2013. "A support strategy for the promotion of photovoltaic uses for residential houses in Korea," Energy Policy, Elsevier, vol. 53(C), pages 248-256.
    6. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    7. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    8. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    9. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    10. Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
    11. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    12. Kim, D.J., 2010. "A new thermoeconomic methodology for energy systems," Energy, Elsevier, vol. 35(1), pages 410-422.
    13. Rosseto de Faria, Pedro & Aiolfi Barone, Marcelo & Guedes dos Santos, Rodrigo & Santos, José Joaquim C.S., 2023. "The environment as a thermoeconomic diagram device for the systematic and automatic waste and environmental cost internalization in thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    14. Lazzaretto, A. & Toffolo, A., 2004. "Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design," Energy, Elsevier, vol. 29(8), pages 1139-1157.
    15. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    16. Kwak, H.-Y. & Kim, D.-J. & Jeon, J.-S., 2003. "Exergetic and thermoeconomic analyses of power plants," Energy, Elsevier, vol. 28(4), pages 343-360.
    17. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    18. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    19. Tonon, S. & Brown, M.T. & Luchi, F. & Mirandola, A. & Stoppato, A. & Ulgiati, S., 2006. "An integrated assessment of energy conversion processes by means of thermodynamic, economic and environmental parameters," Energy, Elsevier, vol. 31(1), pages 149-163.
    20. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:4:p:490-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.