IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021437.html
   My bibliography  Save this article

Energy efficiency optimization of passenger vehicles considering aerodynamic wake flow influence in car-following scenarios

Author

Listed:
  • Lei, Zhenzhen
  • Wan, Wenjun
  • Xue, Along
  • Zeng, Chao
  • Zhang, Yuanjian
  • Chen, Zheng
  • Liu, Yonggang

Abstract

Air resistance plays a crucial role in enhancing fuel efficiency and reducing emissions in vehicle platoons. This paper examines the impact of passenger vehicle’s wake flow on drag reduction in various following scenarios and proposes an efficient following strategy to optimize fuel economy while ensuring vehicle safety. First, the outflow field of passenger vehicle queue is theoretically analyzed, and an aerodynamic simulation model is established. Next, an equivalent drag coefficient estimation method is introduced by incorporating vehicle speed and following distance. Furthermore, a following through control strategy for drag reduction is proposed based on the estimation model. To optimize both safety and drag reduction in real driving conditions, a soft constraint on the equivalent drag coefficient is applied using flexible boundary conditions. Simulation results demonstrate that the proposed following through control strategy, with adaptive drag reduction, can reduce the equivalent drag coefficient by up to 10.77 % and improve average energy efficiency by 9.76 %, highlighting the significant potential of following drag reduction in autonomous driving.

Suggested Citation

  • Lei, Zhenzhen & Wan, Wenjun & Xue, Along & Zeng, Chao & Zhang, Yuanjian & Chen, Zheng & Liu, Yonggang, 2025. "Energy efficiency optimization of passenger vehicles considering aerodynamic wake flow influence in car-following scenarios," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021437
    DOI: 10.1016/j.energy.2025.136501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Bin & Li, Peng-Hui, 2025. "Optimal flexible power allocation energy management strategy for hybrid energy storage system with genetic algorithm based model predictive control," Energy, Elsevier, vol. 324(C).
    2. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    4. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    5. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    6. Hu, Xiaosong & Zhang, Xiaoqian & Tang, Xiaolin & Lin, Xianke, 2020. "Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios," Energy, Elsevier, vol. 196(C).
    7. Tang, Wenbin & Wang, Yaqian & Jiao, Xiaohong & Ren, Lina, 2023. "Hierarchical energy management strategy based on adaptive dynamic programming for hybrid electric vehicles in car-following scenarios," Energy, Elsevier, vol. 265(C).
    8. Guo, Cong & Fu, Chunyun & Luo, Ronghua & Yang, Guanlong, 2022. "Energy-oriented car-following control for a front- and rear-independent-drive electric vehicle platoon," Energy, Elsevier, vol. 257(C).
    9. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    10. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    11. Ma, Fangwu & Yang, Yu & Wang, Jiawei & Liu, Zhenze & Li, Jinhang & Nie, Jiahong & Shen, Yucheng & Wu, Liang, 2019. "Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    2. Huang, Ruchen & He, Hongwen & Su, Qicong, 2024. "An intelligent full-knowledge transferable collaborative eco-driving framework based on improved soft actor-critic algorithm," Applied Energy, Elsevier, vol. 375(C).
    3. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    4. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    5. Tang, Wenbin & Jiao, Xiaohong & Zhang, Yahui, 2025. "Hierarchical energy management control for connected hybrid electric vehicles in uncertain traffic scenarios," Energy, Elsevier, vol. 315(C).
    6. Fan Wang & Yina Hong & Xiaohuan Zhao, 2025. "Research and Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles: A Review," Energies, MDPI, vol. 18(11), pages 1-28, May.
    7. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    8. Pan, Chaofeng & Huang, Aibao & Wang, Jian & Chen, Liao & Liang, Jun & Zhou, Weiqi & Wang, Limei & Yang, Jufeng, 2022. "Energy-optimal adaptive cruise control strategy for electric vehicles based on model predictive control," Energy, Elsevier, vol. 241(C).
    9. Xiaobo Sun & Weirong Liu & Mengfei Wen & Yue Wu & Heng Li & Jiahao Huang & Chao Hu & Zhiwu Huang, 2021. "A Real-Time Optimal Car-Following Power Management Strategy for Hybrid Electric Vehicles with ACC Systems," Energies, MDPI, vol. 14(12), pages 1-17, June.
    10. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Yan, Qi & Xiang, Changle, 2023. "Multiobjective optimization of longitudinal dynamics and energy management for HEVs based on nash bargaining game," Energy, Elsevier, vol. 262(PA).
    11. Nie, Zifei & Farzaneh, Hooman, 2022. "Real-time dynamic predictive cruise control for enhancing eco-driving of electric vehicles, considering traffic constraints and signal phase and timing (SPaT) information, using artificial-neural-netw," Energy, Elsevier, vol. 241(C).
    12. Jiang, Chenming & Yin, Shicong & Yao, Zhihong & He, Junliang & Jiang, Rui & Jiang, Yu, 2024. "Safety evaluation of mixed traffic flow with truck platoons equipped with (cooperative) adaptive cruise control, stochastic human-driven cars and trucks on port freeways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    13. Zifei Nie & Hooman Farzaneh, 2021. "Role of Model Predictive Control for Enhancing Eco-Driving of Electric Vehicles in Urban Transport System of Japan," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    14. Li, Shibo & Chu, Liang & Li, Jun & Guo, Jianhua & Hou, Zhuoran, 2025. "Ecological learning-enhanced hierarchical collaborative control for fuel cell electric vehicle platoons," Energy, Elsevier, vol. 328(C).
    15. Bridgelall, Raj & Patterson, Douglas A. & Tolliver, Denver D., 2020. "Policy implications of truck platooning and electrification," Energy Policy, Elsevier, vol. 139(C).
    16. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    17. Wang, Zihao & Ge, Hongxia & Dai, Pingping & Liu, Huaqing, 2025. "Modeling non-equilibrium mixed traffic flow in composite road environments with “End-Edge-Cloud” structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    18. Xin-Wei Li & Hong-Zhi Miao, 2023. "How to Incorporate Autonomous Vehicles into the Carbon Neutrality Framework of China: Legal and Policy Perspectives," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    19. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    20. Erik Karger & Marvin Jagals & Frederik Ahlemann, 2021. "Blockchain for Smart Mobility—Literature Review and Future Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-32, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.