IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics036054422401106x.html
   My bibliography  Save this article

Energy-optimal car-following model for connected automated vehicles considering traffic flow stability

Author

Listed:
  • Qin, Yanyan
  • Liu, Mingxuan
  • Hao, Wei

Abstract

To reduce energy consumption and transportation emissions during car-following behavior on highways, we propose a car-following model for connected automated vehicles (CAVs). This new model considers spacing variation of the surrounding vehicles located immediately upstream and downstream. We optimize the key parameter of forward control weight of the proposed CAV model to stabilize traffic flow and ensure stable conditions. Then simulation experiments are conducted to validate the effectiveness of our proposed CAV model in enhancing traffic flow stability and energy-saving in mixed traffic consisting of both CAVs and regular vehicles (RVs). Results show that traffic flow controlled by the proposed CAV model is less affected by disturbances. The increase of CAV penetration rates can gradually improve stability of the mixed traffic flow. CAVs equipped with our proposed model can effectively reduce energy consumption and transportation emissions, which decrease with an increase of CAV penetration rates under constant speed conditions. When CAV penetration rate reaches 100 %, the average reduction of energy consumption, CO2 emissions, and NOx emissions at various speeds reach a peak value of 22.15 %, 31.00 %, and 56.41 %, respectively. Speed also has significant influence on energy consumption and emissions, with potential reductions when speed falls within an appropriate range.

Suggested Citation

  • Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401106x
    DOI: 10.1016/j.energy.2024.131333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401106X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401106x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.