IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225010989.html
   My bibliography  Save this article

A multi-criteria assessment framework for direct load control in residential buildings from an occupants’ perspective

Author

Listed:
  • Fabianek, Paul
  • Liepold, Constanze
  • Madlener, Reinhard

Abstract

Based on economic and occupants-relevant criteria, this paper proposes an assessment framework for direct load control schemes, using the Analytic Hierarchy Process approach for a multi-criteria decision analysis. For direct load control, as a form of demand response, a third-party provider (e.g., grid operator, aggregator) is allowed to control or limit the residential electric load upon a control signal. The assessment framework enables the transparent evaluation of different direct load control approaches from a residential perspective, with criteria derived from literature. Five criteria were found to be particularly relevant for evaluating direct load control approaches (in descending order): financial compensation, guaranteed comfort, control, transparency, frequency and duration. The assessment framework includes value scores, which represent the degree to which a specific approach meets a given evaluation criterion, and combines them with the criteria weights derived in the Analytic Hierarchy Process. While direct load control is mostly accepted in the context of heating technology, there is less acceptance for impacted charging of electric vehicles. The results seem useful for third-party providers and policy-makers that need to find better ways to design and implement demand response measures in the private household sector and such that are also acceptable to occupants.

Suggested Citation

  • Fabianek, Paul & Liepold, Constanze & Madlener, Reinhard, 2025. "A multi-criteria assessment framework for direct load control in residential buildings from an occupants’ perspective," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225010989
    DOI: 10.1016/j.energy.2025.135456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fabianek, Paul & Glensk, Barbara & Madlener, Reinhard, 2024. "A sequential real options analysis for renewable power-to-hydrogen plants for Germany and California," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Yilmaz, Selin & Chanez, Cédric & Cuony, Peter & Patel, Martin Kumar, 2022. "Analysing utility-based direct load control programmes for heat pumps and electric vehicles considering customer segmentation," Energy Policy, Elsevier, vol. 164(C).
    3. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    4. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    5. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    6. Nygrén, Nina A. & Kontio, Panu & Lyytimäki, Jari & Varho, Vilja & Tapio, Petri, 2015. "Early adopters boosting the diffusion of sustainable small-scale energy solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 79-87.
    7. Aull-Hyde, Rhonda & Erdogan, Sevgi & Duke, Joshua M., 2006. "An experiment on the consistency of aggregated comparison matrices in AHP," European Journal of Operational Research, Elsevier, vol. 171(1), pages 290-295, May.
    8. Kubli, Merla & Loock, Moritz & Wüstenhagen, Rolf, 2018. "The flexible prosumer: Measuring the willingness to co-create distributed flexibility," Energy Policy, Elsevier, vol. 114(C), pages 540-548.
    9. Stenner, Karen & Frederiks, Elisha R. & Hobman, Elizabeth V. & Cook, Stephanie, 2017. "Willingness to participate in direct load control: The role of consumer distrust," Applied Energy, Elsevier, vol. 189(C), pages 76-88.
    10. Ozgur Dedehayir & Roland J. Ortt & Carla Riverola & Francesc Miralles, 2017. "Innovators And Early Adopters In The Diffusion Of Innovations: A Literature Review," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-27, December.
    11. Paul Fabianek & Reinhard Madlener, 2024. "Willing to Wait? Acceptance of Load Management at e-Vehicle Charging Stations in Germany," FCN Working Papers 13/2024, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    12. Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
    13. Paul Fabianek & Reinhard Madlener, 2024. "Assessing Zero-Emission Vehicles from the Customer’s Perspective by Using a Multi-Criteria Framework," Sustainability, MDPI, vol. 16(24), pages 1-25, December.
    14. Newsham, Guy R. & Bowker, Brent G., 2010. "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review," Energy Policy, Elsevier, vol. 38(7), pages 3289-3296, July.
    15. Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.
    16. Liepold, Constanze & Fabianek, Paul & Madlener, Reinhard, 2024. "A critical evaluation of the 2022 greenhouse gas mitigation quota in Germany from an environmental economics and policy perspective," Energy Policy, Elsevier, vol. 191(C).
    17. Xu, Xiaojing & Chen, Chien-fei & Zhu, Xiaojuan & Hu, Qinran, 2018. "Promoting acceptance of direct load control programs in the United States: Financial incentive versus control option," Energy, Elsevier, vol. 147(C), pages 1278-1287.
    18. Yilmaz, Selin & Xu, Xiaojing & Cabrera, Daniel & Chanez, Cédric & Cuony, Peter & Patel, Martin K., 2020. "Analysis of demand-side response preferences regarding electricity tariffs and direct load control: Key findings from a Swiss survey," Energy, Elsevier, vol. 212(C).
    19. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Residential consumer preferences to demand response: Analysis of different motivators to enroll in direct load control demand response," Energy Policy, Elsevier, vol. 173(C).
    20. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    21. Nilsson, Anders & Bartusch, Cajsa, 2024. "Empowered or enchained? Exploring consumer perspectives on Direct Load Control," Energy Policy, Elsevier, vol. 192(C).
    22. Paul Fabianek & Reinhard Madlener, 2023. "A Multi-criteria Assessment Framework for Zero-Emission Vehicles from a Customers’ Perspective," Lecture Notes in Operations Research, in: Oliver Grothe & Stefan Nickel & Steffen Rebennack & Oliver Stein (ed.), Operations Research Proceedings 2022, chapter 0, pages 471-478, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constanze Liepold & Paul Fabianek & Reinhard Madlener, 2023. "A Multi-Criteria Assessment Framework for Direct Load Control in Residential Buildings from an Occupants’ Perspective," FCN Working Papers 15/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Nilsson, Anders & Bartusch, Cajsa, 2024. "Empowered or enchained? Exploring consumer perspectives on Direct Load Control," Energy Policy, Elsevier, vol. 192(C).
    3. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Toward residential flexibility—Consumer willingness to enroll household loads in demand response," Applied Energy, Elsevier, vol. 342(C).
    4. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Residential consumer preferences to demand response: Analysis of different motivators to enroll in direct load control demand response," Energy Policy, Elsevier, vol. 173(C).
    5. Julien Lancelot Michellod & Declan Kuch & Christian Winzer & Martin K. Patel & Selin Yilmaz, 2022. "Building Social License for Automated Demand-Side Management—Case Study Research in the Swiss Residential Sector," Energies, MDPI, vol. 15(20), pages 1-25, October.
    6. Yilmaz, Selin & Chanez, Cédric & Cuony, Peter & Patel, Martin Kumar, 2022. "Analysing utility-based direct load control programmes for heat pumps and electric vehicles considering customer segmentation," Energy Policy, Elsevier, vol. 164(C).
    7. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika, 2024. "Residential consumer enrollment in demand response: An agent based approach," Applied Energy, Elsevier, vol. 374(C).
    8. Yilmaz, Selin & Cuony, Peter & Chanez, Cédric & Patel, Martin Kumar, 2024. "Communication strategies and consumer acceptance of utility-controlled heat pumps and electric vehicles," Utilities Policy, Elsevier, vol. 90(C).
    9. Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.
    10. Patrick Ludwig & Christian Winzer, 2022. "Tariff Menus to Avoid Rebound Peaks: Results from a Discrete Choice Experiment with Swiss Customers," Energies, MDPI, vol. 15(17), pages 1-21, August.
    11. Bender, Jonas & Fait, Larissa & Wetzel, Heike, 2024. "Acceptance of demand-side flexibility in the residential heating sector — Evidence from a stated choice experiment in Germany," Energy Policy, Elsevier, vol. 191(C).
    12. Wen, Cheng & Steadman, Shandelle & Rafaq, Muhammad Saad & Vatougiou, Paraskevi & Deakin, Matthew, 2025. "Can reduction of local carbon emissions motivate participation in demand-side flexibility programs? Evidence from the United Kingdom," Applied Energy, Elsevier, vol. 388(C).
    13. Helferich, Marvin & Tröger, Josephine & Stephan, Annegret & Preuß, Sabine & Pelka, Sabine & Stute, Judith & Plötz, Patrick, 2024. "Tariff option preferences for smart and bidirectional charging: Evidence from battery electric vehicle users in Germany," Energy Policy, Elsevier, vol. 192(C).
    14. Skoczkowski, Tadeusz & Bielecki, Sławomir & Wołowicz, Marcin & Sobczak, Lidia & Węglarz, Arkadiusz & Gilewski, Paweł, 2024. "Participation in demand side response. Are individual energy users interested in this?," Renewable Energy, Elsevier, vol. 232(C).
    15. O’Reilly, Ryan & Cohen, Jed & Reichl, Johannes, 2024. "Achievable load shifting potentials for the European residential sector from 2022–2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Capper, Timothy & Kuriakose, Jaise & Sharmina, Maria, 2024. "Facilitating domestic demand response in Britain’s electricity system," Utilities Policy, Elsevier, vol. 89(C).
    17. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    18. Sarran, Lucile & Gunay, H. Burak & O'Brien, William & Hviid, Christian A. & Rode, Carsten, 2021. "A data-driven study of thermostat overrides during demand response events," Energy Policy, Elsevier, vol. 153(C).
    19. Yilmaz, Selin & Xu, Xiaojing & Cabrera, Daniel & Chanez, Cédric & Cuony, Peter & Patel, Martin K., 2020. "Analysis of demand-side response preferences regarding electricity tariffs and direct load control: Key findings from a Swiss survey," Energy, Elsevier, vol. 212(C).
    20. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225010989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.