Data reconciliation and exergy analysis: Application in a compressed carbon dioxide energy storage system simulation test rig
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.134519
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jafar Hussain & Chien‐Chiang Lee, 2022. "A green path towards sustainable development: Optimal behavior of the duopoly game model with carbon neutrality instruments," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1523-1541, December.
- Peng, Xiaodong & She, Xiaohui & Cong, Lin & Zhang, Tongtong & Li, Chuan & Li, Yongliang & Wang, Li & Tong, Lige & Ding, Yulong, 2018. "Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage," Applied Energy, Elsevier, vol. 221(C), pages 86-99.
- He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
- Martini, A. & Sorce, A. & Traverso, A. & Massardo, A., 2013. "Data Reconciliation for power systems monitoring: Application to a microturbine-based test rig," Applied Energy, Elsevier, vol. 111(C), pages 1152-1161.
- Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.
- Razmi, Amir Reza & Soltani, M. & Ardehali, Armin & Gharali, Kobra & Dusseault, M.B. & Nathwani, Jatin, 2021. "Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran," Energy, Elsevier, vol. 221(C).
- Alami, Abdul Hai & Hawili, Abdullah Abu & Hassan, Rita & Al-Hemyari, Mohammed & Aokal, Kamilia, 2019. "Experimental study of carbon dioxide as working fluid in a closed-loop compressed gas energy storage system," Renewable Energy, Elsevier, vol. 134(C), pages 603-611.
- Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
- Wu, Ying & Dai, Ying & Xie, Weiyi & Chen, Haijun & Zhu, Yuezhao, 2022. "Performance analysis for post-combustion CO2 capture in coal-fired power plants by integration with solar energy," Energy, Elsevier, vol. 261(PA).
- Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
- Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
- Huang, Qingxi & Feng, Biao & Liu, Shengchun & Ma, Cuiping & Li, Hailong & Sun, Qie, 2023. "Dynamic operating characteristics of a compressed CO2 energy storage system," Applied Energy, Elsevier, vol. 341(C).
- Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
- Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
- Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
- Zhao, Pan & Dai, Yiping & Wang, Jiangfeng, 2014. "Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application," Energy, Elsevier, vol. 70(C), pages 674-684.
- Mercangöz, Mehmet & Hemrle, Jaroslav & Kaufmann, Lilian & Z’Graggen, Andreas & Ohler, Christian, 2012. "Electrothermal energy storage with transcritical CO2 cycles," Energy, Elsevier, vol. 45(1), pages 407-415.
- Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
- Wang, Ding & Sun, Lei & Xie, Yonghui, 2023. "Performance evaluation of CO2 pressurization and storage system combined with S–CO2 power generation process and absorption refrigeration cycle," Energy, Elsevier, vol. 273(C).
- Wang, Mingkun & Zhao, Pan & Yang, Yi & Dai, Yiping, 2015. "Performance analysis of energy storage system based on liquid carbon dioxide with different configurations," Energy, Elsevier, vol. 93(P2), pages 1931-1942.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
- Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
- Liu, Zhongyan & Shao, Jiawei & Guan, Hongwei & Jin, Xu & Zhang, Hao & Li, Heng & Su, Wei & Sun, Dahan, 2025. "Thermo-economic and advanced exergy analysis of a novel liquid carbon dioxide energy storage system coupled with solar energy and liquefied natural gas," Energy, Elsevier, vol. 315(C).
- Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
- Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
- Li, Bo & Xu, Hongpeng & Jiang, Yuemao & Wu, Chuang & Wang, Shun-sen, 2025. "Energy, exergy, economic and exergoeconomic (4E) analysis of a high-temperature liquid CO2 energy storage system: Dual-stage thermal energy storage for performance enhancement," Renewable Energy, Elsevier, vol. 239(C).
- Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Huang, Rui & Zhou, Kang & Liu, Zhan, 2022. "Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system," Energy, Elsevier, vol. 244(PB).
- Zhang, Tianhang & Zhang, Shuqi & Gao, Jianmin & Li, Ximei & Du, Qian & Zhang, Yu & Feng, Dongdong & Sun, Qiaoqun & Peng, Yirui & Tang, Zhipei & Xie, Min & Wei, Guohua, 2023. "Feasibility assessment of a novel compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption: Thermodynamic and economic analysis," Applied Energy, Elsevier, vol. 348(C).
- Guo, Hao & Gong, Maoqiong & Sun, Hailiang, 2021. "Performance analysis of a novel energy storage system based on the combination of positive and reverse organic Rankine cycles," Energy, Elsevier, vol. 231(C).
- Arian Semedo & João Garcia & Moisés Brito, 2025. "Cryogenics in Renewable Energy Storage: A Review of Technologies," Energies, MDPI, vol. 18(6), pages 1-23, March.
- Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
- Karaca, Ali Erdogan & Dincer, Ibrahim & Nitefor, Michael, 2023. "A new renewable energy system integrated with compressed air energy storage and multistage desalination," Energy, Elsevier, vol. 268(C).
- Zhang, Aibo & Yin, Zhaoyuan & Wu, Zhiying & Xie, Min & Liu, Yiliu & Yu, Haoshui, 2023. "Investigation of the compressed air energy storage (CAES) system utilizing systems-theoretic process analysis (STPA) towards safe and sustainable energy supply," Renewable Energy, Elsevier, vol. 206(C), pages 1075-1085.
- Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
- Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
- Jiang, Jiahui & Zhang, Bin & Chen, Wei & Zhang, Xuelin & Li, Dechun & Li, Jian & Li, Hengdong & Xue, Xiaodai, 2025. "Investigation and optimization of the thermal performance of compressed supercritical CO2 energy storage system based on dynamic modeling and transient simulation," Renewable Energy, Elsevier, vol. 238(C).
- Liu, Zhan & Liu, Xu & Zhang, Weifeng & Yang, Shanju & Li, Hailong & Yang, Xiaohu, 2022. "Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid," Energy, Elsevier, vol. 238(PA).
- Li, Guangkuo & Chen, Laijun & Xue, Xiaodai & Guo, Zhongjie & Wang, Guohua & Xie, Ningning & Mei, Shengwei, 2022. "Multi-mode optimal operation of advanced adiabatic compressed air energy storage: Explore its value with condenser operation," Energy, Elsevier, vol. 248(C).
- Qing, He & Lijian, Wang & Qian, Zhou & Chang, Lu & Dongmei, Du & Wenyi, Liu, 2019. "Thermodynamic analysis and optimization of liquefied air energy storage system," Energy, Elsevier, vol. 173(C), pages 162-173.
More about this item
Keywords
CCES; Data reconciliation; Gross error detection; Exergy analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001616. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.