IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040672.html
   My bibliography  Save this article

Experimental investigation on the large temperature lift heat pump with an integrated two-stage independently variable frequency compressor

Author

Listed:
  • Liu, Yishuang
  • Qu, Shengli
  • Shen, Shaofeng
  • Feng, Yiwei
  • Sun, Tianrui
  • Wang, Chuang
  • Xing, Ziwen

Abstract

A large temperature lift heat pump (LTLHP) is defined as a heat pump with a temperature lift exceeding 50 °C. The two-stage configuration represents a viable technological option for enhancing the energy efficiency of large temperature lift heat pumps. In this study, an integrated two-stage screw compressor with variable frequency for both high and low-stages is designed and fabricated for large temperature lift applications, and a corresponding LTLHP system is constructed. Experimental tests are carried out on both the designed screw compressor and the large temperature lift heat pump system under various evaporation and condensation temperatures. The results indicate that the coefficient of performance (COP) of this heat pump, operating at evaporation temperatures between −10 and 10 °C and condensation temperatures from 70 to 80 °C, has improved by up to 10.4 % and averaged 5.5 % compared to similar conventional systems available on the market. Additionally, this study investigated the effect of high-stage rotational speed on the system to develop control strategies. The technical prospect of the integrated two-stage independently variable frequency compressor in the large temperature lift heat pump system is validated.

Suggested Citation

  • Liu, Yishuang & Qu, Shengli & Shen, Shaofeng & Feng, Yiwei & Sun, Tianrui & Wang, Chuang & Xing, Ziwen, 2025. "Experimental investigation on the large temperature lift heat pump with an integrated two-stage independently variable frequency compressor," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040672
    DOI: 10.1016/j.energy.2024.134289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bamigbetan, O. & Eikevik, T.M. & Nekså, P. & Bantle, M. & Schlemminger, C., 2019. "The development of a hydrocarbon high temperature heat pump for waste heat recovery," Energy, Elsevier, vol. 173(C), pages 1141-1153.
    2. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Shin, Hyun Ho & Kim, Kibong & Lee, Minwoo & Han, Changho & Kim, Yongchan, 2024. "Maximized thermal energy utilization of surface water-source heat pumps using heat source compensation strategies under low water temperature conditions," Energy, Elsevier, vol. 288(C).
    4. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Wu, Jinxing & Sun, Shoujun & Song, Qinglu & Sun, Dandan & Wang, Dechang & Li, Jiaxu, 2023. "Energy, exergy, exergoeconomic and environmental (4E) analysis of cascade heat pump, recuperative heat pump and carbon dioxide heat pump with different temperature lifts," Renewable Energy, Elsevier, vol. 207(C), pages 407-421.
    6. Ma, Xudong & Du, Yanjun & Wu, Yuting & Lei, Biao, 2024. "Performance improvement of air-source autocascade high-temperature heat pumps using advanced exergy analysis," Energy, Elsevier, vol. 307(C).
    7. Deng, Jiewen & Su, Yangyang & Peng, Chenwei & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng & Zhang, Hui, 2023. "How to improve the energy performance of mid-deep geothermal heat pump systems: Optimization of heat pump, system configuration and control strategy," Energy, Elsevier, vol. 285(C).
    8. Zou, Huiming & Li, Xuan & Tang, Mingsheng & Wu, Jiang & Tian, Changqing & Butrymowicz, Dariusz & Ma, Yongde & Wang, Jin, 2020. "Temperature stage matching and experimental investigation of high-temperature cascade heat pump with vapor injection," Energy, Elsevier, vol. 212(C).
    9. Hu, Bin & Liu, Hua & Jiang, Jiatong & Zhang, Zhiping & Li, Hongbo & Wang, R.Z., 2022. "Ten megawatt scale vapor compression heat pump for low temperature waste heat recovery: Onsite application research," Energy, Elsevier, vol. 238(PB).
    10. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    11. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Li, Yanpeng & Liu, Yishuang & Li, Zengqun & Wang, Chuang & Xing, Ziwen & Ren, Dawei & Zhu, Yili, 2024. "Semi-empirical model of the twin-screw refrigeration compressor with capacity control devices," Energy, Elsevier, vol. 305(C).
    13. Bamigbetan, Opeyemi & Eikevik, Trygve Magne & Nekså, Petter & Bantle, Michael & Schlemminger, Christian, 2019. "Experimental investigation of a prototype R-600 compressor for high temperature heat pump," Energy, Elsevier, vol. 169(C), pages 730-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Dong, Yixiu & Madani, Hatef & Kou, Xiaoxue & Wang, Ruzhu, 2025. "High temperature heat pump with dual uses of cooling and heating for industrial applications," Applied Energy, Elsevier, vol. 379(C).
    3. Ji, Qiang & Che, Chunwen & Yin, Yonggao & Huang, Gongsheng & Pan, Tengxiang & Zhao, Donglin & Wang, Yikai, 2024. "Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump," Applied Energy, Elsevier, vol. 376(PB).
    4. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    5. You, Jinfang & Zhang, Xi & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle," Energy, Elsevier, vol. 289(C).
    6. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Obika, Echezona & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermodynamic analysis of novel mixtures including siloxanes and cyclic hydrocarbons for high-temperature heat pumps," Energy, Elsevier, vol. 294(C).
    8. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    9. Jiang, Yuemao & Su, Wen & Wu, Chuang & Wang, Shunsen, 2024. "Enhanced thermally integrated Carnot battery using low-GWP working fluid pair: Multi-aspect analysis and multi-scale optimization," Applied Energy, Elsevier, vol. 376(PA).
    10. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    11. Obrist, Michel D. & Kannan, Ramachandran & McKenna, Russell & Schmidt, Thomas J. & Kober, Tom, 2023. "High-temperature heat pumps in climate pathways for selected industry sectors in Switzerland," Energy Policy, Elsevier, vol. 173(C).
    12. Feng, Chunyu & Guo, Cong & Chen, Junbin & Tan, Sicong & Jiang, Yuyan, 2024. "Thermodynamic analysis of a dual-pressure evaporation high-temperature heat pump with low GWP zeotropic mixtures for steam generation," Energy, Elsevier, vol. 294(C).
    13. Navarro-Esbrí, Joaquín & Fernández-Moreno, Adrián & Mota-Babiloni, Adrián, 2022. "Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization," Energy, Elsevier, vol. 254(PB).
    14. Wang, Ruzhu & Yan, Hongzhi & Wu, Di & Jiang, Jiatong & Dong, Yixiu, 2024. "High temperature heat pumps for industrial heating processes using water as refrigerant," Energy, Elsevier, vol. 313(C).
    15. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    16. Andersen, Martin Pihl & Zühlsdorf, Benjamin & Markussen, Wiebke Brix & Jensen, Jonas Kjær & Elmegaard, Brian, 2024. "Selection of working fluids and heat pump cycles at high temperatures: Creating a concise technology portfolio," Applied Energy, Elsevier, vol. 376(PB).
    17. Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.
    18. Andrea Zini & Luca Socci & Guglielmo Vaccaro & Andrea Rocchetti & Lorenzo Talluri, 2024. "Working Fluid Selection for High-Temperature Heat Pumps: A Comprehensive Evaluation," Energies, MDPI, vol. 17(7), pages 1-24, March.
    19. Mehdipour, Ramin & Garvey, Seamus & Baniamerian, Zahra & Cardenas, Bruno, 2024. "Ice source heat pump system for energy supply via gas pipelines – Part1: Performance analysis in residential units," Energy, Elsevier, vol. 309(C).
    20. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.