IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223029316.html
   My bibliography  Save this article

How to improve the energy performance of mid-deep geothermal heat pump systems: Optimization of heat pump, system configuration and control strategy

Author

Listed:
  • Deng, Jiewen
  • Su, Yangyang
  • Peng, Chenwei
  • Qiang, Wenbo
  • Cai, Wanlong
  • Wei, Qingpeng
  • Zhang, Hui

Abstract

Mid-deep borehole heat exchangers (MDBHEs) extract heat from geothermal energy with depth of 2–3 km, and provide high-temperature heat source for heat pump heating system. To improve the energy performance, this paper conducted optimization analysis on heat pump, system configuration and control strategy. Firstly, the energy efficiency and regulation characteristic of magnetic bearing variable-speed centrifugal heat pump (MBC-HP) was examined through field tests and simulation analysis. Results showed that MBC-HP performed efficiently with wide-range variation of heating load and compression ratio. And average COP of MBC-HP reached 6.21 during heating season. Besides, as evaporator-side water temperature difference (dTe) reached about 10 °C, two-stage MBC-HPs connected in series was raised to fit the large dTe, and the average COP of heat pump was improved to 6.97. Furthermore, the evaporator-side water flow rate (Ge) affected the energy efficiency of heat pump system and heat transfer performance of MDBHEs significantly. Thus the water pumps were recommended to be connected in parallel and then connected with heat pumps. Then the numbers and frequency of water pumps should be regulated to maintain dTe about 9.0 °C. Compared with control strategy of constant Ge, the COPs of heat pump system increased to 5.28, showing 18.7 % improvement.

Suggested Citation

  • Deng, Jiewen & Su, Yangyang & Peng, Chenwei & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng & Zhang, Hui, 2023. "How to improve the energy performance of mid-deep geothermal heat pump systems: Optimization of heat pump, system configuration and control strategy," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223029316
    DOI: 10.1016/j.energy.2023.129537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiewen Deng & Qingpeng Wei & Shi He & Mei Liang & Hui Zhang, 2020. "Simulation Analysis on the Heat Performance of Deep Borehole Heat Exchangers in Medium-Depth Geothermal Heat Pump Systems," Energies, MDPI, vol. 13(3), pages 1-28, February.
    2. Cai, Wanlong & Wang, Fenghao & Chen, Shuang & Chen, Chaofan & Liu, Jun & Deng, Jiewen & Kolditz, Olaf & Shao, Haibing, 2021. "Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study," Applied Energy, Elsevier, vol. 289(C).
    3. Huashan Li & Sihao Huang & Xianbiao Bu & Lingbao Wang, 2021. "Analysis of deep borehole heat exchanger with horizontal branch wells for building heating [A thorough assessment of China’s standard for energy consumption of buildings]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1164-1169.
    4. Dai, Chuanshan & Li, Jiashu & Shi, Yu & Zeng, Long & Lei, Haiyan, 2019. "An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
    6. Deng, Jiewen & Wei, Qingpeng & Qian, Yangyang & Zhang, Hui, 2018. "Does magnetic bearing variable-speed centrifugal chiller perform truly energy efficient in buildings: Field-test and simulation results," Applied Energy, Elsevier, vol. 229(C), pages 998-1009.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Jiewen & Peng, Chenwei & Su, Yangyang & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng, 2023. "Research on the heat storage characteristic of deep borehole heat exchangers under intermittent operation mode: Simulation analysis and comparative study," Energy, Elsevier, vol. 282(C).
    2. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    3. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    4. Zhang, Fangfang & Fang, Liang & Jia, Linrui & Man, Yi & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2021. "A dimension reduction algorithm for numerical simulation of multi-borehole heat exchangers," Renewable Energy, Elsevier, vol. 179(C), pages 2235-2245.
    5. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    6. Zhang, Fangfang & Yu, Mingzhi & Sørensen, Bjørn R. & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2022. "Heat extraction capacity and its attenuation of deep borehole heat exchanger array," Energy, Elsevier, vol. 254(PA).
    7. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    8. Zhang, Yuanyuan & Ye, Cantao & Kong, Yanlong & Gong, Yulie & Zhang, Dongdong & Yao, Yecheng, 2023. "Thermal attenuation and heat supplementary analysis of medium-deep coaxial borehole system-based on a practical project," Energy, Elsevier, vol. 270(C).
    9. Xiangxi Qin & Yazhou Zhao & Chengjun Dai & Jian Wei & Dahai Xue, 2022. "Thermal Performance Analysis on the Seasonal Heat Storage by Deep Borehole Heat Exchanger with the Extended Finite Line Source Model," Energies, MDPI, vol. 15(22), pages 1-38, November.
    10. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "Heat Transfer Modeling on High-Temperature Charging and Discharging of Deep Borehole Heat Exchanger with Transient Strong Heat Flux," Sustainability, MDPI, vol. 14(15), pages 1-34, August.
    11. Isa Kolo & Christopher S. Brown & Gioia Falcone & David Banks, 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    12. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    13. huajun, Wang & Yishuo, Xu & Yukun, Sun & Sumin, Zhao, 2022. "Heat extraction by deep coaxial borehole heat exchanger for clean space heating near Beijing, China: Field test, model comparison and operation pattern evaluation," Renewable Energy, Elsevier, vol. 199(C), pages 803-815.
    14. Zhendi Ma & Siyu Qin & Yuping Zhang & Wei-Hsin Chen & Guosheng Jia & Chonghua Cheng & Liwen Jin, 2023. "Effects of Boundary Conditions on Performance Prediction of Deep-Buried Ground Heat Exchangers for Geothermal Energy Utilization," Energies, MDPI, vol. 16(13), pages 1-27, June.
    15. Shen, Junhao & Zhou, Chaohui & Luo, Yongqiang & Tian, Zhiyong & Zhang, Shicong & Fan, Jianhua & Ling, Zhang, 2023. "Comprehensive thermal performance analysis and optimization study on U-type deep borehole ground source heat pump systems based on a new analytical model," Energy, Elsevier, vol. 274(C).
    16. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    17. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    18. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).
    19. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    20. Brown, Christopher S. & Kolo, Isa & Falcone, Gioia & Banks, David, 2023. "Investigating scalability of deep borehole heat exchangers: Numerical modelling of arrays with varied modes of operation," Renewable Energy, Elsevier, vol. 202(C), pages 442-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223029316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.