IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925004672.html
   My bibliography  Save this article

Adaptive model-based optimal control of hybrid deep borehole ground source heat pump systems with integrated latent heat thermal energy storage

Author

Listed:
  • Wang, Zeyuan
  • Zhou, Xinlei
  • Wang, Fenghao
  • Sha, Xinyi
  • Lu, Menglong
  • Ma, Zhenjun

Abstract

Compared with conventional deep borehole ground source heat pump (DB-GSHP) systems, integrating latent heat thermal energy storage (LHTES) and borehole passive heating into the DB-GSHP system has greater potential in achieving energy savings and increasing demand flexibility. This study presented an adaptive model-based optimal control strategy for hybrid DB-GSHP systems with integrated LHTES and passive heating. The optimal control problem was solved using adaptive performance models, quantile regression, online identification, and a genetic algorithm (GA), to identify the optimal control settings of the hybrid system. To predict system energy performance, novel adaptive models for the deep borehole heat exchanger (DBHE), LHTES tanks, and heat pump were proposed, and the model parameters were continuously updated using an adaptive forgetting factor recursive least squares estimation algorithm. A quantile regression technique was integrated with a GA optimizer to dynamically narrow down the search space of the decision variables. The proposed control strategy was tested along with two benchmarking scenarios using a co-simulation approach. The results showed that the DBHE control-oriented adaptive model, combining discrete transfer functions and online identification technique, can effectively predict the outlet temperature of the borehole under dynamic working conditions. By integrating quantile regression models, the average computational costs of the GA optimizer were reduced by 32.9 %. The proposed control strategy achieved 11.9 % energy savings and 11.5 % electricity cost savings for the integrated system over a heating season with respect to a baseline control strategy. Compared to the system without LHTES, the system with integrated LHTES saved 6.4 % in energy use and 35.2 % in electricity costs, when the proposed control strategy was applied to both systems.

Suggested Citation

  • Wang, Zeyuan & Zhou, Xinlei & Wang, Fenghao & Sha, Xinyi & Lu, Menglong & Ma, Zhenjun, 2025. "Adaptive model-based optimal control of hybrid deep borehole ground source heat pump systems with integrated latent heat thermal energy storage," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925004672
    DOI: 10.1016/j.apenergy.2025.125737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Jiewen & Su, Yangyang & Peng, Chenwei & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng & Zhang, Hui, 2023. "How to improve the energy performance of mid-deep geothermal heat pump systems: Optimization of heat pump, system configuration and control strategy," Energy, Elsevier, vol. 285(C).
    2. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Li, Chao & Jiang, Chao & Guan, Yanling, 2022. "An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles," Energy, Elsevier, vol. 244(PA).
    4. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    5. Weeratunge, Hansani & Narsilio, Guillermo & de Hoog, Julian & Dunstall, Simon & Halgamuge, Saman, 2018. "Model predictive control for a solar assisted ground source heat pump system," Energy, Elsevier, vol. 152(C), pages 974-984.
    6. Cai, Wanlong & Wang, Fenghao & Chen, Shuang & Chen, Chaofan & Liu, Jun & Deng, Jiewen & Kolditz, Olaf & Shao, Haibing, 2021. "Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study," Applied Energy, Elsevier, vol. 289(C).
    7. Candanedo, J.A. & Dehkordi, V.R. & Stylianou, M., 2013. "Model-based predictive control of an ice storage device in a building cooling system," Applied Energy, Elsevier, vol. 111(C), pages 1032-1045.
    8. Fong, K.F. & Yuen, S.Y. & Chow, C.K. & Leung, S.W., 2010. "Energy management and design of centralized air-conditioning systems through the non-revisiting strategy for heuristic optimization methods," Applied Energy, Elsevier, vol. 87(11), pages 3494-3506, November.
    9. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    10. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    11. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    12. Johnson, Samuel C. & Rhodes, Joshua D. & Webber, Michael E., 2020. "Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways," Applied Energy, Elsevier, vol. 262(C).
    13. Yu, X. & Wang, R.Z. & Zhai, X.Q., 2011. "Year round experimental study on a constant temperature and humidity air-conditioning system driven by ground source heat pump," Energy, Elsevier, vol. 36(2), pages 1309-1318.
    14. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Hussain, Syed Asad & Huang, Gongsheng & Yuen, Richard Kwok Kit & Wang, Wei, 2020. "Adaptive regression model-based real-time optimal control of central air-conditioning systems," Applied Energy, Elsevier, vol. 276(C).
    16. Jia, Zhiyang & Jin, Xinqiao & Lyu, Yuan & Xue, Qi & Du, Zhimin, 2024. "A novel load allocation strategy based on the adaptive chiller model with data augmentation," Energy, Elsevier, vol. 309(C).
    17. Tay, N.H.S. & Belusko, M. & Bruno, F., 2012. "An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems," Applied Energy, Elsevier, vol. 91(1), pages 309-319.
    18. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Zhihua & Wang, Shugang, 2018. "A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 214(C), pages 178-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    2. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    3. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Paul Christodoulides & Christakis Christou & Georgios A. Florides, 2024. "Ground Source Heat Pumps in Buildings Revisited and Prospects," Energies, MDPI, vol. 17(13), pages 1-36, July.
    5. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Wan, Hang & Gong, Yuyang & Dang, Chuangyin & Wang, Shengwei & Huang, Gongsheng, 2025. "Power control of latent heat thermal energy storage units using a model-based predictive strategy," Applied Energy, Elsevier, vol. 382(C).
    7. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
    8. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    11. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    12. Ding, Yan & Wang, Qiaochu & Kong, Xiangfei & Yang, Kun, 2019. "Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios," Applied Energy, Elsevier, vol. 250(C), pages 1600-1617.
    13. Zhu, Yiqun & Zhang, Quan & Huang, Gongsheng & Wang, Jiaqiang & Zou, Sikai, 2024. "The influence of uncertainty parameters on the double-layer model predictive control strategy for the collaborative operation of chiller and cold storage tank in data center," Energy, Elsevier, vol. 313(C).
    14. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    15. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    16. Roselli, C. & Diglio, G. & Sasso, M. & Tariello, F., 2019. "A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid," Renewable Energy, Elsevier, vol. 143(C), pages 488-500.
    17. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    18. Maria Manzoor & Usman Rauf Kamboh & Sumaira Gulshan & Sven Tomforde & Iram Gul & Alighazi Siddiqui & Muhammad Arshad, 2023. "Optimizing Sustainable Phytoextraction of Lead from Contaminated Soil Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN)," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    19. Wang, Chengshan & Jiao, Bingqi & Guo, Li & Tian, Zhe & Niu, Jide & Li, Siwei, 2016. "Robust scheduling of building energy system under uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 366-376.
    20. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925004672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.