IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224011198.html
   My bibliography  Save this article

Design and hydrodynamic study of a new pile-based breakwater-OWC device combined system

Author

Listed:
  • Qu, Ming
  • Yu, Dingyong
  • Li, Yufeng
  • Gao, Zhiyang

Abstract

In order to enhance the conversion efficiency and optimize the hydrodynamic performance of the OWC device, a novel combined system composed of a pile-based OWC chamber and a perforated wave-eliminator is proposed. The schemes with rectangular front wall M1, elliptical front wall M2, M3 are designed. Physical tests and numerical simulations were conducted for the hydrodynamic process under the action of wave of the system with H/d = 0.16, 0.20, 0.24 and L/B = 3.3, 3.8, 4.3, 4.7, 5.2, 5.5, 6.4. The obtained-results show that the system has better energy converting and wave eliminating performance than the other existing systems. Its maximum conversion efficiency ξ is up to 70%, while its transmission coefficient Ct is less than 0.45. Compared to M1 and M2, M3 can improve the efficiency ξ of the system (up to approximately 35%) and reduce the maximum force exerted on the system (up to 10%). When studying the forces on the combined system, the horizontal force (in the direction of wave propagation) can be primarily calculated by considering the force exerted on the chamber. However, when investigating the vertical forces (opposite to gravity) acting on the system, both the OWC chamber and the wave-eliminator need to be considered. The research results can provide valuable references for further design optimization of OWC devices.

Suggested Citation

  • Qu, Ming & Yu, Dingyong & Li, Yufeng & Gao, Zhiyang, 2024. "Design and hydrodynamic study of a new pile-based breakwater-OWC device combined system," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011198
    DOI: 10.1016/j.energy.2024.131346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.