IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224011198.html
   My bibliography  Save this article

Design and hydrodynamic study of a new pile-based breakwater-OWC device combined system

Author

Listed:
  • Qu, Ming
  • Yu, Dingyong
  • Li, Yufeng
  • Gao, Zhiyang

Abstract

In order to enhance the conversion efficiency and optimize the hydrodynamic performance of the OWC device, a novel combined system composed of a pile-based OWC chamber and a perforated wave-eliminator is proposed. The schemes with rectangular front wall M1, elliptical front wall M2, M3 are designed. Physical tests and numerical simulations were conducted for the hydrodynamic process under the action of wave of the system with H/d = 0.16, 0.20, 0.24 and L/B = 3.3, 3.8, 4.3, 4.7, 5.2, 5.5, 6.4. The obtained-results show that the system has better energy converting and wave eliminating performance than the other existing systems. Its maximum conversion efficiency ξ is up to 70%, while its transmission coefficient Ct is less than 0.45. Compared to M1 and M2, M3 can improve the efficiency ξ of the system (up to approximately 35%) and reduce the maximum force exerted on the system (up to 10%). When studying the forces on the combined system, the horizontal force (in the direction of wave propagation) can be primarily calculated by considering the force exerted on the chamber. However, when investigating the vertical forces (opposite to gravity) acting on the system, both the OWC chamber and the wave-eliminator need to be considered. The research results can provide valuable references for further design optimization of OWC devices.

Suggested Citation

  • Qu, Ming & Yu, Dingyong & Li, Yufeng & Gao, Zhiyang, 2024. "Design and hydrodynamic study of a new pile-based breakwater-OWC device combined system," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011198
    DOI: 10.1016/j.energy.2024.131346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trivedi, Kshma & Koley, Santanu, 2021. "Mathematical modeling of breakwater-integrated oscillating water column wave energy converter devices under irregular incident waves," Renewable Energy, Elsevier, vol. 178(C), pages 403-419.
    2. Samak, Mahmoud M. & Elgamal, Hassan & Nagib Elmekawy, Ahmed M., 2021. "The contribution of L-shaped front wall in the improvement of the oscillating water column wave energy converter performance," Energy, Elsevier, vol. 226(C).
    3. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    4. Qu, Ming & Yu, Dingyong & Li, Yufeng & Gao, Zhiyang, 2023. "Effect of relative chamber width on energy conversion and mechanical characteristics of the offshore OWC device: A numerical study," Energy, Elsevier, vol. 275(C).
    5. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2018. "Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling," Renewable Energy, Elsevier, vol. 119(C), pages 741-753.
    6. Taherian Haghighi, Ali & Nikseresht, Amir H. & Hayati, Mohammad, 2021. "Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column," Energy, Elsevier, vol. 221(C).
    7. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Ming & Yu, Dingyong & Xu, Zhigang & Gao, Zhiyang, 2022. "The effect of the elliptical front wall on energy conversion performance of the offshore OWC chamber: A numerical study," Energy, Elsevier, vol. 255(C).
    2. Qu, Ming & Yu, Dingyong & Li, Yufeng & Gao, Zhiyang, 2023. "Effect of relative chamber width on energy conversion and mechanical characteristics of the offshore OWC device: A numerical study," Energy, Elsevier, vol. 275(C).
    3. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    4. Portillo, J.C.C. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2023. "Implications of spring-like air compressibility effects in floating coaxial-duct OWCs: Experimental and numerical investigation," Renewable Energy, Elsevier, vol. 212(C), pages 478-491.
    5. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
    7. Zeng, Yuxin & Shi, Wei & Michailides, Constantine & Ren, Zhengru & Li, Xin, 2022. "Turbulence model effects on the hydrodynamic response of an oscillating water column (OWC) with use of a computational fluid dynamics model," Energy, Elsevier, vol. 261(PA).
    8. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    9. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
    10. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Zhou, Yu & Chen, Lifen & Zhao, Jie & Liu, Xiangjian & Ye, Xiaorong & Wang, Fei & Adcock, Thomas A.A. & Ning, Dezhi, 2023. "Power and dynamic performance of a floating multi-functional platform: An experimental study," Energy, Elsevier, vol. 285(C).
    12. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    13. Mahdy, Ahmed & Hasanien, Hany M. & Helmy, Waleed & Turky, Rania A. & Abdel Aleem, Shady H.E., 2022. "Transient stability improvement of wave energy conversion systems connected to power grid using anti-windup-coot optimization strategy," Energy, Elsevier, vol. 245(C).
    14. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
    15. Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
    16. Hsien Hua Lee & Cheng-Han Chen, 2020. "Parametric Study for an Oscillating Water Column Wave Energy Conversion System Installed on a Breakwater," Energies, MDPI, vol. 13(8), pages 1-22, April.
    17. Ning, De-zhi & Mu, Di & Wang, Rong-quan & Mayon, Robert, 2023. "Experimental and numerical investigations on the solitary wave actions on a land-fixed OWC wave energy converter," Energy, Elsevier, vol. 282(C).
    18. Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).
    19. Medina Rodríguez, Ayrton Alfonso & Trivedi, Kshma & Koley, Santanu & Oderiz Martinez, Itxaso & Mendoza, Edgar & Posada Vanegas, Gregorio & Silva, Rodolfo, 2023. "Improved hydrodynamic performance of an OWC device based on a Helmholtz resonator," Energy, Elsevier, vol. 273(C).
    20. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Effects of mooring configurations on the hydrodynamic performance of a floating offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.