IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp1381-1397.html
   My bibliography  Save this article

Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy

Author

Listed:
  • Mia, Mohammad Rashed
  • Zhao, Ming
  • Wu, Helen
  • Munir, Adnan

Abstract

Oscillating water column (OWC) devices utilise wave-induced oscillation of water column in partially submerged chambers to extract energy of waves in ocean. The principal aim of this paper is to investigate scaling effects of two-dimensional OWC through numerical simulations. The fluid motion under waves is simulated by solving the two-dimensional incompressible Reynolds-Averaged Navier-Stokes equations using finite element method under Arbitrary Lagrangian-Eulerian scheme. To investigate scaling effects, the waves and the OWC are scaled up or down according to Froude number similarity. The turbine is scaled up or down using three different scaling methods: (1) Turbine coefficient remains unchanged, i.e. not scaling the turbine at all; (2) Equivalent pneumatic damping coefficient of the turbine is constant and (3) the two-dimensional turbine coefficient is constant. The numerical results show that method (2) has the smallest effects on the best hydraulic efficiency and method (3) has the smallest effects on the best performance wave number, i.e. the wave number where the OWC receives the largest percentage of the wave energy. The worst scaling method is not scaling the turbine. Because the best performance wave number varies with the model scale in method (1) and (2), it is very likely the scaling effects of the model scale on the hydrodynamic performance at different wave numbers are different from each other. In addition, the effects of the wave height and the chamber volume are studied. Increasing chamber volume causes a reduction of the best performance, however it may improve general performance of OWC because it increases the frequency band of waves with high hydraulic efficiency. Increasing wave height causes a reduction of the hydraulic efficiency.

Suggested Citation

  • Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1381-1397
    DOI: 10.1016/j.renene.2021.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    2. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    3. Vyzikas, Thomas & Deshoulières, Samy & Giroux, Olivier & Barton, Matthew & Greaves, Deborah, 2017. "Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model," Renewable Energy, Elsevier, vol. 102(PB), pages 294-305.
    4. Luo, Yongyao & Nader, Jean-Roch & Cooper, Paul & Zhu, Song-Ping, 2014. "Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters," Renewable Energy, Elsevier, vol. 64(C), pages 255-265.
    5. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
    6. Deng, Zhengzhi & Wang, Chen & Wang, Peng & Higuera, Pablo & Wang, Ruoqian, 2019. "Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study," Energy, Elsevier, vol. 187(C).
    7. Liu, Zhen & Cui, Ying & Xu, Chuanli & Sun, Lixin & Li, Ming & Jin, Jiyuan, 2019. "Experimental and numerical studies on an OWC axial-flow impulse turbine in reciprocating air flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Rezanejad, K. & Guedes Soares, C. & López, I. & Carballo, R., 2017. "Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter," Renewable Energy, Elsevier, vol. 106(C), pages 1-16.
    9. Dai, Saishuai & Day, Sandy & Yuan, Zhiming & Wang, Haibin, 2019. "Investigation on the hydrodynamic scaling effect of an OWC type wave energy device using experiment and CFD simulation," Renewable Energy, Elsevier, vol. 142(C), pages 184-194.
    10. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
    11. Ning, De-Zhi & Shi, Jin & Zou, Qing-Ping & Teng, Bin, 2015. "Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)," Energy, Elsevier, vol. 83(C), pages 177-188.
    12. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.
    13. Fang He & Mingjia Li & Zhenhua Huang, 2016. "An Experimental Study of Pile-Supported OWC-Type Breakwaters: Energy Extraction and Vortex-Induced Energy Loss," Energies, MDPI, vol. 9(7), pages 1-15, July.
    14. Pereiras, Bruno & López, Iván & Castro, Francisco & Iglesias, Gregorio, 2015. "Non-dimensional analysis for matching an impulse turbine to an OWC (oscillating water column) with an optimum energy transfer," Energy, Elsevier, vol. 87(C), pages 481-489.
    15. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    16. Josset, C. & Clément, A.H., 2007. "A time-domain numerical simulator for oscillating water column wave power plants," Renewable Energy, Elsevier, vol. 32(8), pages 1379-1402.
    17. Zhang, Dahai & Li, Wei & Lin, Yonggang & Bao, Jingwei, 2012. "An overview of hydraulic systems in wave energy application in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4522-4526.
    18. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
    19. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2018. "Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling," Renewable Energy, Elsevier, vol. 119(C), pages 741-753.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Ming & Yu, Dingyong & Li, Yufeng & Gao, Zhiyang, 2023. "Effect of relative chamber width on energy conversion and mechanical characteristics of the offshore OWC device: A numerical study," Energy, Elsevier, vol. 275(C).
    2. Portillo, J.C.C. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2023. "Implications of spring-like air compressibility effects in floating coaxial-duct OWCs: Experimental and numerical investigation," Renewable Energy, Elsevier, vol. 212(C), pages 478-491.
    3. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    5. Qu, Ming & Yu, Dingyong & Xu, Zhigang & Gao, Zhiyang, 2022. "The effect of the elliptical front wall on energy conversion performance of the offshore OWC chamber: A numerical study," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    2. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    3. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    4. Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
    5. Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
    6. Simonetti, I. & Cappietti, L. & Oumeraci, H., 2018. "An empirical model as a supporting tool to optimize the main design parameters of a stationary oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 231(C), pages 1205-1215.
    7. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    9. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    10. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    12. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    13. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    14. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
    15. Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
    16. Medina Rodríguez, Ayrton Alfonso & Trivedi, Kshma & Koley, Santanu & Oderiz Martinez, Itxaso & Mendoza, Edgar & Posada Vanegas, Gregorio & Silva, Rodolfo, 2023. "Improved hydrodynamic performance of an OWC device based on a Helmholtz resonator," Energy, Elsevier, vol. 273(C).
    17. Gonçalves, Rafael A.A.C. & Teixeira, Paulo R.F. & Didier, Eric & Torres, Fernando R., 2020. "Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber," Renewable Energy, Elsevier, vol. 153(C), pages 1183-1193.
    18. Çelik, Anıl & Altunkaynak, Abdüsselam, 2019. "Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter," Energy, Elsevier, vol. 188(C).
    19. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
    20. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1381-1397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.