IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222013317.html
   My bibliography  Save this article

The effect of the elliptical front wall on energy conversion performance of the offshore OWC chamber: A numerical study

Author

Listed:
  • Qu, Ming
  • Yu, Dingyong
  • Xu, Zhigang
  • Gao, Zhiyang

Abstract

The configuration of the front wall has an obvious influence on the effect energy conversion effect of the offshore OWC devices. In order to improve the energy conversion effect of the OWC device, a new elliptic front wall structure for the offshore OWC chamber was proposed in this paper. The variation of pressure, outlet air flow and free surface height of the chamber were studied by numerical simulation, with the change in the angle of elliptical front wall (β = 0, 5, 10, 15, 20, 25, 30), and under the wave condition of relative wavelength L/B = 4.0–9.0. Based on the results, the effect of the elliptical front wall angle on the energy conversion efficiency of the offshore OWC chamber were analyzed. The main results are as follows: Compared with the rectangular front wall, the elliptical front wall can effectively improve the energy conversion effect. The elliptical front wall with β = 25 has the best comprehensive effect under the test wave condition. With the influence of it, the wave energy conversion efficiencyξ is about 25% higher than the chamber with the common rectangular front wall(β = 0). The results can be used as a reference for the design of OWC devices.

Suggested Citation

  • Qu, Ming & Yu, Dingyong & Xu, Zhigang & Gao, Zhiyang, 2022. "The effect of the elliptical front wall on energy conversion performance of the offshore OWC chamber: A numerical study," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222013317
    DOI: 10.1016/j.energy.2022.124428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Trivedi, Kshma & Koley, Santanu, 2021. "Mathematical modeling of breakwater-integrated oscillating water column wave energy converter devices under irregular incident waves," Renewable Energy, Elsevier, vol. 178(C), pages 403-419.
    4. Samak, Mahmoud M. & Elgamal, Hassan & Nagib Elmekawy, Ahmed M., 2021. "The contribution of L-shaped front wall in the improvement of the oscillating water column wave energy converter performance," Energy, Elsevier, vol. 226(C).
    5. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    6. Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
    7. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Ren, Bing, 2020. "Experimental investigation of an annular sector OWC device incorporated into a dual cylindrical caisson breakwater," Energy, Elsevier, vol. 211(C).
    8. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2018. "Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling," Renewable Energy, Elsevier, vol. 119(C), pages 741-753.
    9. Doyle, Simeon & Aggidis, George A., 2021. "Experimental investigation and performance comparison of a 1 single OWC, array and M-OWC," Renewable Energy, Elsevier, vol. 168(C), pages 365-374.
    10. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
    11. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    13. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    14. Ching-Piao Tsai & Chun-Han Ko & Ying-Chi Chen, 2018. "Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    15. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Ming & Yu, Dingyong & Li, Yufeng & Gao, Zhiyang, 2023. "Effect of relative chamber width on energy conversion and mechanical characteristics of the offshore OWC device: A numerical study," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Ming & Yu, Dingyong & Li, Yufeng & Gao, Zhiyang, 2024. "Design and hydrodynamic study of a new pile-based breakwater-OWC device combined system," Energy, Elsevier, vol. 299(C).
    2. Qu, Ming & Yu, Dingyong & Li, Yufeng & Gao, Zhiyang, 2023. "Effect of relative chamber width on energy conversion and mechanical characteristics of the offshore OWC device: A numerical study," Energy, Elsevier, vol. 275(C).
    3. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    4. Mahdy, Ahmed & Hasanien, Hany M. & Helmy, Waleed & Turky, Rania A. & Abdel Aleem, Shady H.E., 2022. "Transient stability improvement of wave energy conversion systems connected to power grid using anti-windup-coot optimization strategy," Energy, Elsevier, vol. 245(C).
    5. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    6. Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
    7. Mandev, Murat Barış & Altunkaynak, Abdüsselam, 2022. "Advanced efficiency improvement of a sloping wall oscillating water column via a novel streamlined chamber design," Energy, Elsevier, vol. 259(C).
    8. Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
    9. Cheng, Yong & Song, Fukai & Fu, Lei & Dai, Saishuai & Zhiming Yuan, & Incecik, Atilla, 2024. "Experimental investigation of a dual-pontoon WEC-type breakwater with a hydraulic-pneumatic complementary power take-off system," Energy, Elsevier, vol. 286(C).
    10. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
    11. Carlo, Lilia & Iuppa, Claudio & Faraci, Carla, 2023. "A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter," Renewable Energy, Elsevier, vol. 203(C), pages 89-101.
    12. Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).
    13. Portillo, J.C.C. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2023. "Model tests on a floating coaxial-duct OWC wave energy converter with focus on the spring-like air compressibility effect," Energy, Elsevier, vol. 263(PA).
    14. Cheng, Yong & Du, Weiming & Dai, Saishuai & Yuan, Zhiming & Incecik, Atilla, 2024. "Wave energy conversion by an array of oscillating water columns deployed along a long-flexible floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Zeng, Yuxin & Shi, Wei & Michailides, Constantine & Ren, Zhengru & Li, Xin, 2022. "Turbulence model effects on the hydrodynamic response of an oscillating water column (OWC) with use of a computational fluid dynamics model," Energy, Elsevier, vol. 261(PA).
    16. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "A novel dual-chamber oscillating water column system with dual lip-wall pitching motions for wave energy conversion," Energy, Elsevier, vol. 246(C).
    18. Xu, Conghao & He, Yuanyuan & Yao, Yu & Zuo, Jun, 2023. "Experimental and numerical study of a circular OWC with a U-shaped duct for wave energy conversion in long waves: Hydrodynamic characteristics and viscous energy loss," Renewable Energy, Elsevier, vol. 215(C).
    19. Portillo, J.C.C. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2023. "Implications of spring-like air compressibility effects in floating coaxial-duct OWCs: Experimental and numerical investigation," Renewable Energy, Elsevier, vol. 212(C), pages 478-491.
    20. Cheng, Yong & Song, Fukai & Xi, Chen & Collu, Maurizio & Yuan, Zhiming & Incecik, Atilla, 2023. "Feasibility of integrating a very large floating structure with multiple wave energy converters combining oscillating water columns and oscillating flaps," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222013317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.