IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222002249.html
   My bibliography  Save this article

Transient stability improvement of wave energy conversion systems connected to power grid using anti-windup-coot optimization strategy

Author

Listed:
  • Mahdy, Ahmed
  • Hasanien, Hany M.
  • Helmy, Waleed
  • Turky, Rania A.
  • Abdel Aleem, Shady H.E.

Abstract

This paper introduces an enhancement to the transient stability of a wave energy conversion system (WECS) by using the coot optimization algorithm (COA) combined with an anti-windup method. This combination helps in elimination of the windup issue in the integral term of the proportional-integral (PI) controller during power system faults leading to a significant enhancement for the transient stability of the WECS connected to the grid. The COA is utilized to select the PI controller parameters and the anti-windup method back-calculation coefficients. The WECS converts the linear vertical motion into electrical energy by using an Archimedes wave swing device connected to a linear synchronous generator. Minimization of the generator's stator losses and maximization of the generator's real power is accomplished by the utilization of a generator-side converter (GSC). Also, both the point of common coupling voltage and the capacitor link voltage are set at their reference values by utilizing a grid-side inverter (GSI). An optimal design for the PI controllers in both converters is achieved by direct application of the COA to the MATLAB/Simulink model. A comparison is made among the results obtained by the COA and those obtained by other recent optimization algorithms under different grid fault conditions.

Suggested Citation

  • Mahdy, Ahmed & Hasanien, Hany M. & Helmy, Waleed & Turky, Rania A. & Abdel Aleem, Shady H.E., 2022. "Transient stability improvement of wave energy conversion systems connected to power grid using anti-windup-coot optimization strategy," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222002249
    DOI: 10.1016/j.energy.2022.123321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, LiGuo & Lin, MaoFeng & Tedeschi, Elisabetta & Engström, Jens & Isberg, Jan, 2020. "Improving electric power generation of a standalone wave energy converter via optimal electric load control," Energy, Elsevier, vol. 211(C).
    2. Alizadeh, Mojtaba & Kojori, Shokrollah Shokri, 2015. "Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller," Energy, Elsevier, vol. 91(C), pages 610-629.
    3. Siahpour, Shahin & Khakiani, Fardad N. & Fazlollahi, Vahid & Golozar, Ali & Shirazi, Farzad A., 2021. "Morphing Omni-directional Panel Mechanism: A novel active roof design for improving the performance of the wind delivery system," Energy, Elsevier, vol. 217(C).
    4. Marei, Mostafa I. & Mokhtar, Mohamed & El-Sattar, Ahmed A., 2015. "MPPT strategy based on speed control for AWS-based wave energy conversion system," Renewable Energy, Elsevier, vol. 83(C), pages 305-317.
    5. Samak, Mahmoud M. & Elgamal, Hassan & Nagib Elmekawy, Ahmed M., 2021. "The contribution of L-shaped front wall in the improvement of the oscillating water column wave energy converter performance," Energy, Elsevier, vol. 226(C).
    6. Hur, Sung-ho, 2018. "Modelling and control of a wind turbine and farm," Energy, Elsevier, vol. 156(C), pages 360-370.
    7. Taveiros, F.E.V. & Barros, L.S. & Costa, F.B., 2015. "Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines," Energy, Elsevier, vol. 89(C), pages 896-906.
    8. Ali, Ehab S., 2015. "Speed control of induction motor supplied by wind turbine via Imperialist Competitive Algorithm," Energy, Elsevier, vol. 89(C), pages 593-600.
    9. Dillon, Trent & Maurer, Benjamin & Lawson, Michael & Jenne, Dale Scott & Manalang, Dana & Baca, Elena & Polagye, Brian, 2022. "Cost-optimal wave-powered persistent oceanographic observation," Renewable Energy, Elsevier, vol. 181(C), pages 504-521.
    10. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
    11. Zheng, Chong-wei, 2021. "Dynamic self-adjusting classification for global wave energy resources under different requirements," Energy, Elsevier, vol. 236(C).
    12. Graça Gomes, J. & Xu, H.J. & Yang, Q. & Zhao, C.Y., 2021. "An optimization study on a typical renewable microgrid energy system with energy storage," Energy, Elsevier, vol. 234(C).
    13. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    14. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    15. Budi Azhari & Fransisco Danang Wijaya & Edwar Yazid, 2021. "Performance of Linear Generator Designs for Direct Drive Wave Energy Converter under Unidirectional Long-Crested Random Waves," Energies, MDPI, vol. 14(16), pages 1-28, August.
    16. Rasool, Safdar & Muttaqi, Kashem M. & Sutanto, Danny, 2020. "Modelling of a wave-to-wire system for a wave farm and its response analysis against power quality and grid codes," Renewable Energy, Elsevier, vol. 162(C), pages 2041-2055.
    17. Ciappi, Lorenzo & Cheli, Lapo & Simonetti, Irene & Bianchini, Alessandro & Talluri, Lorenzo & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Wave-to-wire models of wells and impulse turbines for oscillating water column wave energy converters operating in the Mediterranean Sea," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peddakapu, K. & Mohamed, M.R. & Srinivasarao, P. & Licari, J., 2024. "Optimized controllers for stabilizing the frequency changes in hybrid wind-photovoltaic-wave energy-based maritime microgrid systems," Applied Energy, Elsevier, vol. 361(C).
    2. Mahdy, Ahmed & Hasanien, Hany M. & Turky, Rania A. & Abdel Aleem, Shady H.E., 2023. "Modeling and optimal operation of hybrid wave energy and PV system feeding supercharging stations based on golden jackal optimal control strategy," Energy, Elsevier, vol. 263(PD).
    3. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Ming & Yu, Dingyong & Xu, Zhigang & Gao, Zhiyang, 2022. "The effect of the elliptical front wall on energy conversion performance of the offshore OWC chamber: A numerical study," Energy, Elsevier, vol. 255(C).
    2. Liao, Zhijing & Li, Guang, 2024. "Model predictive control of a wave-to-wire wave energy converter system with non-linear dynamics and non-linear constraints using a tailored pseudo-spectral method," Energy, Elsevier, vol. 304(C).
    3. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    4. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    5. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    6. Tatiana Potapenko & Joseph Burchell & Sandra Eriksson & Irina Temiz, 2021. "Wave Energy Converter’s Slack and Stiff Connection: Study of Absorbed Power in Irregular Waves," Energies, MDPI, vol. 14(23), pages 1-21, November.
    7. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    8. Wu, Jinming & Qin, Liuzhen & Chen, Ni & Qian, Chen & Zheng, Siming, 2022. "Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose," Energy, Elsevier, vol. 245(C).
    9. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    10. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Duan, Derong & Lin, Xiangyang & Wang, Muhao & Liu, Xia & Gao, Changqing & Zhang, Hui & Yang, Xuefeng, 2024. "Study on energy conversion efficiency of wave generation in shake plate mode," Energy, Elsevier, vol. 290(C).
    12. Vissio, Giacomo & Valério, Duarte & Bracco, Giovanni & Beirão, Pedro & Pozzi, Nicola & Mattiazzo, Giuliana, 2017. "ISWEC linear quadratic regulator oscillating control," Renewable Energy, Elsevier, vol. 103(C), pages 372-382.
    13. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2019. "Wave energy resource classification system for US coastal waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 54-68.
    15. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    16. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    17. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    18. Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
    19. Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
    20. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222002249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.