IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5633-d556795.html
   My bibliography  Save this article

Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM

Author

Listed:
  • Mobin Masoomi

    (Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol 47184-71167, Iran)

  • Mahdi Yousefifard

    (Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol 47184-71167, Iran)

  • Amir Mosavi

    (Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
    John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
    Information Systems, University of Siegen, 57072 Siegen, Germany)

Abstract

Oscillating water column (OWC) is an advanced form of wave energy converter (WEC). This study aims at improving the efficiency of an amended OWC through a novel methodology for simulating several vertical plates within the chamber. This paper provides a numerical investigation considering one, two, three, and four vertical plates. The open field operation and manipulation (OpenFOAM) solver is verified based on the Reynolds-Averaged Navier–Stokes (RANS) equation. Results show the number and the position of plates where the convertor’s efficiency improves. The work undertaken here also revealed a reduction in the net force imposed on the convertor’s structure, especially the front wall. Consequently, adding plates acquires more efficiency with lower force on the system.

Suggested Citation

  • Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5633-:d:556795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deng, Zhengzhi & Wang, Chen & Wang, Peng & Higuera, Pablo & Wang, Ruoqian, 2019. "Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study," Energy, Elsevier, vol. 187(C).
    2. Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
    3. Teixeira, Paulo R.F. & Davyt, Djavan P. & Didier, Eric & Ramalhais, Rubén, 2013. "Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations," Energy, Elsevier, vol. 61(C), pages 513-530.
    4. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    5. Mitchell Ferguson, Tom & Penesis, Irene & Macfarlane, Gregor & Fleming, Alan, 2017. "A PIV investigation of OWC operation in regular, polychromatic and irregular waves," Renewable Energy, Elsevier, vol. 103(C), pages 143-155.
    6. John Ashlin, S. & Sundar, V. & Sannasiraj, S.A., 2016. "Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics," Renewable Energy, Elsevier, vol. 96(PA), pages 341-353.
    7. Simonetti, I. & Cappietti, L. & Oumeraci, H., 2018. "An empirical model as a supporting tool to optimize the main design parameters of a stationary oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 231(C), pages 1205-1215.
    8. Louise O’Boyle & Björn Elsäßer & Trevor Whittaker, 2017. "Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    9. Daniel Raj, D. & Sundar, V. & Sannasiraj, S.A., 2019. "Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls," Renewable Energy, Elsevier, vol. 132(C), pages 142-156.
    10. Ning, De-zhi & Wang, Rong-quan & Chen, Li-fen & Sun, Ke, 2019. "Experimental investigation of a land-based dual-chamber OWC wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 48-60.
    11. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
    12. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2018. "Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling," Renewable Energy, Elsevier, vol. 119(C), pages 741-753.
    13. Luo, Yongyao & Nader, Jean-Roch & Cooper, Paul & Zhu, Song-Ping, 2014. "Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters," Renewable Energy, Elsevier, vol. 64(C), pages 255-265.
    14. Kuo, Yu-Shu & Chung, Chih-Yin & Hsiao, Shih-Chun & Wang, Yu-Kai, 2017. "Hydrodynamic characteristics of Oscillating Water Column caisson breakwaters," Renewable Energy, Elsevier, vol. 103(C), pages 439-447.
    15. Rezanejad, K. & Bhattacharjee, J. & Guedes Soares, C., 2015. "Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom," Renewable Energy, Elsevier, vol. 75(C), pages 272-282.
    16. Viviano, Antonino & Naty, Stefania & Foti, Enrico & Bruce, Tom & Allsop, William & Vicinanza, Diego, 2016. "Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves," Renewable Energy, Elsevier, vol. 99(C), pages 875-887.
    17. Rezanejad, K. & Gadelho, J.F.M. & Guedes Soares, C., 2019. "Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD," Renewable Energy, Elsevier, vol. 135(C), pages 1241-1259.
    18. Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoomi, Mobin & Sarlak, Hamid & Rezanejad, Kourosh, 2023. "Hydrodynamic performance analysis of a new hybrid wave energy converter system using OpenFOAM," Energy, Elsevier, vol. 269(C).
    2. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    3. Mandev, Murat Barış & Altunkaynak, Abdüsselam, 2022. "Advanced efficiency improvement of a sloping wall oscillating water column via a novel streamlined chamber design," Energy, Elsevier, vol. 259(C).
    4. Yanna Zheng & Jiafan Li & Yingna Mu & Yu Zhang & Siyao Huang & Xiran Shao, 2023. "Numerical Study on Wave Dissipation Performance of OWC-Perforated Floating Breakwater under Irregular Waves," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    5. Qu, Ming & Yu, Dingyong & Xu, Zhigang & Gao, Zhiyang, 2022. "The effect of the elliptical front wall on energy conversion performance of the offshore OWC chamber: A numerical study," Energy, Elsevier, vol. 255(C).
    6. Dimitrios N. Konispoliatis, 2023. "The Effect of Hydrodynamics on the Power Efficiency of a Toroidal Oscillating Water Column Device," Sustainability, MDPI, vol. 15(16), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Wang & Zhengzhi Deng & Pinjie Wang & Yu Yao, 2019. "Wave Power Extraction from a Dual Oscillating-Water- Column System Composed of Heave-Only and Onshore Units," Energies, MDPI, vol. 12(9), pages 1-22, May.
    2. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    3. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    4. Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
    5. Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    6. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
    8. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
    9. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    10. Güths, A.K. & Teixeira, P.R.F. & Didier, E., 2022. "A novel geometry of an onshore Oscillating Water Column wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 938-949.
    11. Carlo, Lilia & Iuppa, Claudio & Faraci, Carla, 2023. "A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter," Renewable Energy, Elsevier, vol. 203(C), pages 89-101.
    12. Taherian Haghighi, Ali & Nikseresht, Amir H. & Hayati, Mohammad, 2021. "Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column," Energy, Elsevier, vol. 221(C).
    13. Medina Rodríguez, Ayrton Alfonso & Trivedi, Kshma & Koley, Santanu & Oderiz Martinez, Itxaso & Mendoza, Edgar & Posada Vanegas, Gregorio & Silva, Rodolfo, 2023. "Improved hydrodynamic performance of an OWC device based on a Helmholtz resonator," Energy, Elsevier, vol. 273(C).
    14. Medina Rodríguez, Ayrton Alfonso & Silva Casarín, Rodolfo & Blanco Ilzarbe, Jesús María, 2022. "The influence of oblique waves on the hydrodynamic efficiency of an onshore OWC wave energy converter," Renewable Energy, Elsevier, vol. 183(C), pages 687-707.
    15. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
    16. Mohapatra, Piyush & Vijay, K.G. & Bhattacharyya, Anirban & Sahoo, Trilochan, 2023. "Influence of distinct bottom geometries on the hydrodynamic performance of an OWC device," Energy, Elsevier, vol. 277(C).
    17. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Wave power extraction for an oscillating water column device consisting of a surging front and back lip-wall: An analytical study," Renewable Energy, Elsevier, vol. 184(C), pages 100-114.
    18. Trivedi, Kshma & Koley, Santanu, 2023. "Mathematical modeling of oscillating water column wave energy converter devices placed over an undulated seabed in a two-layer fluid system," Renewable Energy, Elsevier, vol. 216(C).
    19. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    20. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Inclusion of a pitching mid-wall for a dual-chamber oscillating water column wave energy converter device," Renewable Energy, Elsevier, vol. 185(C), pages 1177-1191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5633-:d:556795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.