IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11427-d1200640.html
   My bibliography  Save this article

Numerical Study on Wave Dissipation Performance of OWC-Perforated Floating Breakwater under Irregular Waves

Author

Listed:
  • Yanna Zheng

    (College of Marine and Civil Engineering, Dalian Ocean University, Dalian 116023, China
    Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China)

  • Jiafan Li

    (College of Marine and Civil Engineering, Dalian Ocean University, Dalian 116023, China
    Sichuan Rural Water Conservancy Center, Chengdu 610031, China)

  • Yingna Mu

    (College of Marine and Civil Engineering, Dalian Ocean University, Dalian 116023, China
    Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China)

  • Yu Zhang

    (College of Marine and Civil Engineering, Dalian Ocean University, Dalian 116023, China
    School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China)

  • Siyao Huang

    (College of Marine and Civil Engineering, Dalian Ocean University, Dalian 116023, China)

  • Xiran Shao

    (College of Marine and Civil Engineering, Dalian Ocean University, Dalian 116023, China)

Abstract

This paper utilizes ANSYS-AQWA hydrodynamic simulation analysis software (2022 R2) to investigate the wave dissipation performance of an Oscillating Water Column (OWC) perforated floating breakwater under irregular wave conditions. The study examines the effect of spacing, width of the OWC opening, water depth, incident wave angle, and significant wave height on the wave dissipation performance of the floating breakwater. The results indicate that the wave dissipation performance of the OWC-perforated floating breakwater surpasses that of similar structures. The transmission coefficient is significantly influenced by spacing and water depth when subjected to irregular waves. The width of the OWC opening also affects the wave dissipation to some extent, with wider openings demonstrating improved performance in the case of long-period waves. The incident wave angle of 0 degrees yields enhanced wave dissipation performance. Although the meaningful wave height has minimal impact on wave dissipation, it increases proportionally with the rise in meaningful wave height. This study offers valuable insights for the design and implementation of floating breakwaters and holds significant practical implications for the research on integrated devices combining floating breakwaters and wave power generation.

Suggested Citation

  • Yanna Zheng & Jiafan Li & Yingna Mu & Yu Zhang & Siyao Huang & Xiran Shao, 2023. "Numerical Study on Wave Dissipation Performance of OWC-Perforated Floating Breakwater under Irregular Waves," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11427-:d:1200640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
    2. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    3. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    4. Ching-Piao Tsai & Chun-Han Ko & Ying-Chi Chen, 2018. "Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    5. Xueyan Li & Zhen Yu & Hengliang Qu & Moyao Yang & Hongyuan Shi & Zhenhua Zhang, 2023. "Experimental Study on the Aerodynamic Performance and Wave Energy Capture Efficiency of Square and Curved OWC Wave Energy Conversion Devices," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    2. Ruijia Jin & Jiawei Wang & Hanbao Chen & Baolei Geng & Zhen Liu, 2022. "Numerical Investigation of Multi-Floater Truss-Type Wave Energy Convertor Platform," Energies, MDPI, vol. 15(15), pages 1-17, August.
    3. Qu, Ming & Yu, Dingyong & Xu, Zhigang & Gao, Zhiyang, 2022. "The effect of the elliptical front wall on energy conversion performance of the offshore OWC chamber: A numerical study," Energy, Elsevier, vol. 255(C).
    4. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
    5. Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
    6. Zhou, Binzhen & Wang, Yu & Zheng, Zhi & Jin, Peng & Ning, Dezhi, 2023. "Power generation and wave attenuation of a hybrid system involving a heaving cylindrical wave energy converter in front of a parabolic breakwater," Energy, Elsevier, vol. 282(C).
    7. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Li, Mingxin & Yuan, Zhiming & Incecik, Atilla, 2022. "Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure," Applied Energy, Elsevier, vol. 306(PA).
    8. Zhou, Binzhen & Zheng, Zhi & Zhang, Qi & Jin, Peng & Wang, Lei & Ning, Dezhi, 2023. "Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters," Energy, Elsevier, vol. 271(C).
    9. Giorgi, Giuseppe & Gomes, Rui P.F. & Henriques, João C.C. & Gato, Luís M.C. & Bracco, Giovanni & Mattiazzo, Giuliana, 2020. "Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: Numerical simulations and validation with physical model tests," Applied Energy, Elsevier, vol. 276(C).
    10. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    11. Zhang, Yang & Zhao, Xuanlie & Geng, Jing & Göteman, Malin & Tao, Longbin, 2022. "Wave power extraction and coastal protection by a periodic array of oscillating buoys embedded in a breakwater," Renewable Energy, Elsevier, vol. 190(C), pages 434-456.
    12. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Mahdy, Ahmed & Hasanien, Hany M. & Turky, Rania A. & Abdel Aleem, Shady H.E., 2023. "Modeling and optimal operation of hybrid wave energy and PV system feeding supercharging stations based on golden jackal optimal control strategy," Energy, Elsevier, vol. 263(PD).
    14. Wang, Anqun & Chen, Jun & Wang, Li & Han, Junlei & Su, Weiguang & Li, Anqing & Liu, Pengbo & Duan, Liya & Xu, Chonghai & Zeng, Zheng, 2022. "Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator," Applied Energy, Elsevier, vol. 307(C).
    15. Masoomi, Mobin & Sarlak, Hamid & Rezanejad, Kourosh, 2023. "Hydrodynamic performance analysis of a new hybrid wave energy converter system using OpenFOAM," Energy, Elsevier, vol. 269(C).
    16. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    17. Wei Peng & Yingnan Zhang & Xueer Yang & Jisheng Zhang & Rui He & Yanjun Liu & Renwen Chen, 2020. "Hydrodynamic Performance of a Hybrid System Combining a Fixed Breakwater and a Wave Energy Converter: An Experimental Study," Energies, MDPI, vol. 13(21), pages 1-21, November.
    18. Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2020. "Hydrodynamic performance of a Comb-Type Breakwater-WEC system: An analytical study," Renewable Energy, Elsevier, vol. 159(C), pages 33-49.
    19. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot, 2021. "Wave energy extraction for an array of dual-oscillating wave surge converter with different layouts," Applied Energy, Elsevier, vol. 292(C).
    20. Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11427-:d:1200640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.