IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001070.html
   My bibliography  Save this article

Feasibility study of potential flow and viscous flow models for a bistable wave energy converter using numerical and experimental methods

Author

Listed:
  • Sun, Xiedong
  • Zhang, Haicheng
  • Li, Pengcheng
  • Liu, Chunrong
  • Shi, Qijia
  • Xu, Daolin

Abstract

Bistable mechanisms (BMs), which have the potential to improve the capture efficiency and broaden the frequency bandwidth, have recently been explored for use in wave energy converters (WECs). Currently, most research is conducted using simple models that ignore fluid viscosity. In this study, a numerical viscous flow model for the classical BM-WEC is developed, along with a corresponding simplified potential flow theoretical model, to provide a comprehensive comparative study of potential flow and viscous flow models for bistable WECs. As a benchmark, a physical model of the BM-WEC was constructed for testing in a wave flume. The comparative study shows that nonlinear damping predominantly influences the predictive results of the BM-WEC. The evolving trend of results with varying damping is revealed, demonstrating that the potential flow model can perform well if the precise nonlinear damping can be determined. With the introduction of the BM, the energy capture efficiency at lower frequencies and wave attenuation performance at higher frequencies have significantly improved. The concept of the nonlinear numerical model proposed in this study may be extended to address other wave-structure nonlinear coupling problems.

Suggested Citation

  • Sun, Xiedong & Zhang, Haicheng & Li, Pengcheng & Liu, Chunrong & Shi, Qijia & Xu, Daolin, 2025. "Feasibility study of potential flow and viscous flow models for a bistable wave energy converter using numerical and experimental methods," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001070
    DOI: 10.1016/j.energy.2025.134465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.