IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1577-d1364018.html
   My bibliography  Save this article

Research on Wave Energy Converters

Author

Listed:
  • Jijian Lian

    (School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China
    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 92, Wei Jin Road, Nan Kai District, Tianjin 300072, China)

  • Xiaowei Wang

    (School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China)

  • Xiaoqun Wang

    (School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China
    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 92, Wei Jin Road, Nan Kai District, Tianjin 300072, China)

  • Dongke Wu

    (Baoding Water Conservancy Design Institute, No. 97 Sunshine South Street, Jingxiu District, Baoding 071052, China)

Abstract

With the acceleration of the global warming process, the clean energy crisis is becoming serious; conventional energy is unlikely to solve the current crisis, so people pay attention to new energy. As wave energy is widely distributed, renewable, and clean, hundreds of wave energy converters emerge. In order to understand the research progress of wave energy converters better, this paper divides wave energy converters into overtopping type, oscillating water column type, and oscillating body type according to the working principle and divides the oscillating body type into oscillating float type and oscillating pendulum type by different ways of energy capture. Based on the classification, various types of engineering cases, physical tests and digital simulation, and other academic research results are summarized, especially the generation power and energy conversion efficiency of various devices, and some shortcomings and suggestions are put forward, hoping to provide help for readers to study wave energy generation converters.

Suggested Citation

  • Jijian Lian & Xiaowei Wang & Xiaoqun Wang & Dongke Wu, 2024. "Research on Wave Energy Converters," Energies, MDPI, vol. 17(7), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1577-:d:1364018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    2. He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
    2. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
    3. Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
    4. Zhou, Binzhen & Wang, Yu & Zheng, Zhi & Jin, Peng & Ning, Dezhi, 2023. "Power generation and wave attenuation of a hybrid system involving a heaving cylindrical wave energy converter in front of a parabolic breakwater," Energy, Elsevier, vol. 282(C).
    5. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Li, Mingxin & Yuan, Zhiming & Incecik, Atilla, 2022. "Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure," Applied Energy, Elsevier, vol. 306(PA).
    6. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    7. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Wang, Anqun & Chen, Jun & Wang, Li & Han, Junlei & Su, Weiguang & Li, Anqing & Liu, Pengbo & Duan, Liya & Xu, Chonghai & Zeng, Zheng, 2022. "Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator," Applied Energy, Elsevier, vol. 307(C).
    9. Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
    10. Cheng, Yong & Fu, Lei & Dai, Saishuai & Collu, Maurizio & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
    12. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    13. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    14. Fang He & Mingjia Li & Zhenhua Huang, 2016. "An Experimental Study of Pile-Supported OWC-Type Breakwaters: Energy Extraction and Vortex-Induced Energy Loss," Energies, MDPI, vol. 9(7), pages 1-15, July.
    15. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    16. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    17. Ruijia Jin & Jiawei Wang & Hanbao Chen & Baolei Geng & Zhen Liu, 2022. "Numerical Investigation of Multi-Floater Truss-Type Wave Energy Convertor Platform," Energies, MDPI, vol. 15(15), pages 1-17, August.
    18. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    19. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
    20. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1577-:d:1364018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.