IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223004711.html
   My bibliography  Save this article

Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters

Author

Listed:
  • Zhou, Binzhen
  • Zheng, Zhi
  • Zhang, Qi
  • Jin, Peng
  • Wang, Lei
  • Ning, Dezhi

Abstract

An abreast pair of floating parabolic breakwaters is proposed as part of a breakwater-WEC (wave energy converter) hybrid system. An objective is providing a basis for tackling the problem of unreasonable shape while applying an isolated parabolic breakwater along a long shore. The other is providing multiple wave amplification chambers for the WECs. Wave attenuation and amplification are investigated using an open-source code HAMS. The effects of gap length and connection manner between the two parts in the pair are analyzed. Results show that for non-zero gap length, the application of a rigid connection slightly improves the wave attenuation by increasing the area of the low wave region on its lee side and greatly improves the wave amplification by increasing the area of the high wave amplification region on the weather side. An increase in the gap length intensifies the separation of low and high wave regions on the lee side by increasing both their areas, whereas it has negligible influence on the wave amplification. The worst wave amplification is obtained for rigidly connected breakwaters with no gap in between. A small gap is therefore recommended to be retained to improve the wave amplification without damaging the wave attenuation.

Suggested Citation

  • Zhou, Binzhen & Zheng, Zhi & Zhang, Qi & Jin, Peng & Wang, Lei & Ning, Dezhi, 2023. "Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004711
    DOI: 10.1016/j.energy.2023.127077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
    2. Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
    3. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    4. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    5. Dongsheng Qiao & Rizwan Haider & Jun Yan & Dezhi Ning & Binbin Li, 2020. "Review of Wave Energy Converter and Design of Mooring System," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    6. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    7. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    8. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    9. Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2020. "Hydrodynamic performance of a Comb-Type Breakwater-WEC system: An analytical study," Renewable Energy, Elsevier, vol. 159(C), pages 33-49.
    10. Zhang, Yang & Zhao, Xuanlie & Geng, Jing & Göteman, Malin & Tao, Longbin, 2022. "Wave power extraction and coastal protection by a periodic array of oscillating buoys embedded in a breakwater," Renewable Energy, Elsevier, vol. 190(C), pages 434-456.
    11. Jin, Peng & Zhou, Binzhen & Göteman, Malin & Chen, Zhongfei & Zhang, Liang, 2019. "Performance optimization of a coaxial-cylinder wave energy converter," Energy, Elsevier, vol. 174(C), pages 450-459.
    12. Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
    13. Mayon, Robert & Ning, Dezhi & Zhang, Chongwei & Chen, Lifen & Wang, Rongquan, 2021. "Wave energy capture by an omnidirectional point sink oscillating water column system," Applied Energy, Elsevier, vol. 304(C).
    14. Jin, Siya & Greaves, Deborah, 2021. "Wave energy in the UK: Status review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2021. "Experimental and analytical investigation on hydrodynamic performance of the comb-type breakwater-wave energy converter system with a flange," Renewable Energy, Elsevier, vol. 172(C), pages 392-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    2. Zhou, Binzhen & Wang, Yu & Zheng, Zhi & Jin, Peng & Ning, Dezhi, 2023. "Power generation and wave attenuation of a hybrid system involving a heaving cylindrical wave energy converter in front of a parabolic breakwater," Energy, Elsevier, vol. 282(C).
    3. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Binzhen & Wang, Yu & Zheng, Zhi & Jin, Peng & Ning, Dezhi, 2023. "Power generation and wave attenuation of a hybrid system involving a heaving cylindrical wave energy converter in front of a parabolic breakwater," Energy, Elsevier, vol. 282(C).
    2. Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
    3. Zhang, Yang & Zhao, Xuanlie & Geng, Jing & Göteman, Malin & Tao, Longbin, 2022. "Wave power extraction and coastal protection by a periodic array of oscillating buoys embedded in a breakwater," Renewable Energy, Elsevier, vol. 190(C), pages 434-456.
    4. Wang, Yuhan & Dong, Sheng, 2022. "Array of concentric perforated cylindrical systems with torus oscillating bodies integrated on inner cylinders," Applied Energy, Elsevier, vol. 327(C).
    5. Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
    6. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    8. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    9. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    10. Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).
    11. Singh, Mansi & Gayen, R., 2023. "Performance of two vertically submerged piezoelectric plate wave energy converters in presence of a non-flat flexible barrier," Renewable Energy, Elsevier, vol. 212(C), pages 382-393.
    12. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
    13. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Yang, Can & Xu, Tingting & Wan, Chang & Liu, Hengxu & Su, Zuohang & Zhao, Lujun & Chen, Hailong & Johanning, Lars, 2023. "Numerical investigation of a dual cylindrical OWC hybrid system incorporated into a fixed caisson breakwater," Energy, Elsevier, vol. 263(PE).
    15. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Li, Mingxin & Yuan, Zhiming & Incecik, Atilla, 2022. "Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure," Applied Energy, Elsevier, vol. 306(PA).
    16. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    17. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    18. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2022. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 1: Numerical modelling," Renewable Energy, Elsevier, vol. 181(C), pages 1402-1418.
    19. Zheng, Siming & Zhu, Guixun & Simmonds, David & Greaves, Deborah & Iglesias, Gregorio, 2020. "Wave power extraction from a tubular structure integrated oscillating water column," Renewable Energy, Elsevier, vol. 150(C), pages 342-355.
    20. Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2020. "Hydrodynamic performance of a Comb-Type Breakwater-WEC system: An analytical study," Renewable Energy, Elsevier, vol. 159(C), pages 33-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.