IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006996.html
   My bibliography  Save this article

Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement

Author

Listed:
  • Tian, Ai-Qing
  • Wang, Xiao-Yang
  • Xu, Heying
  • Pan, Jeng-Shyang
  • Snášel, Václav
  • Lv, Hong-Xia

Abstract

This paper establishes a multi-objective optimization model for railway heavy-haul trains, focusing on reducing carbon emissions and improving transport efficiency. The model integrates optimization of the route and the vehicle load rate, significantly reducing carbon emissions and enhancing transport efficiency. It addresses the challenges and characteristics of heavy-haul trains, introducing multi-objective optimization problems related to transport carbon emissions and efficiency. Using a pigeon-inspired optimization algorithm, the model considers joint constraints between carbon emissions and transport efficiency objectives. To overcome challenges in multi-objective transportation problems, the paper proposes a forward-learning pigeon-inspired optimization algorithm based on a surrogate-assisted model. This approach calculates the quality of the candidate solution using a surrogate model, reducing time costs. The algorithm employs a forward-learning strategy to enhance learning from non-dominant solutions. Experimental validation with benchmark functions confirms the effectiveness of the model and offers optimized solutions. The proposed method reduces carbon emissions while maintaining transport efficiency, contributing innovative ideas for the development of sustainable heavy-duty trains.

Suggested Citation

  • Tian, Ai-Qing & Wang, Xiao-Yang & Xu, Heying & Pan, Jeng-Shyang & Snášel, Václav & Lv, Hong-Xia, 2024. "Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006996
    DOI: 10.1016/j.energy.2024.130927
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.