IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp344-360.html
   My bibliography  Save this article

A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting

Author

Listed:
  • Wang, Jianzhou
  • Du, Pei
  • Niu, Tong
  • Yang, Wendong

Abstract

In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power dispatching and power grid security. However, most previous research has focused only on enhancing either accuracy or stability, with few studies addressing the two issues, simultaneously. This task is challenging due to the intermittency and complex fluctuations of wind speed. Therefore, we proposed a novel hybrid system based on a newly proposed called the MOWOA, which includes four modules: a data preprocessing module, optimization module, forecasting module, and evaluation module. An effective decomposing technique is also applied to eliminate redundant noise and extract the primary characteristics of wind speed data. In order to obtain high accuracy, and stability for wind speed prediction simultaneously, and overcome the weaknesses of single objective optimization algorithms, the optimization module of the proposed MOWOA is utilized to optimize the weights and thresholds of the Elman neutral network used in the forecasting module. Finally, the evaluation module, which includes hypothesis testing, evaluation criteria, and three experiments, is introduced perform comprehensive evaluation on the system. The results indicate that the proposed MOWOA performs better than the two recently developed MOALO and MODA algorithms, and that the proposed hybrid model outperforms all sixteen models used for comparison, which demonstrates its superior ability to generate forecasts in terms of forecasting accuracy and stability.

Suggested Citation

  • Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:344-360
    DOI: 10.1016/j.apenergy.2017.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Li & Ou, Yanxia & Cai, Jingjing & Wang, Jin & Fu, Yang & Bian, Xiaoyan, 2023. "Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:344-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.