IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4571-d1736588.html
   My bibliography  Save this article

A Transformer-Based Hybrid Neural Network Integrating Multiresolution Turbulence Intensity and Independent Modeling of Multiple Meteorological Features for Wind Speed Forecasting

Author

Listed:
  • Hongbin Liu

    (Department of Mathematics, College of Science, Beijing Forestry University, Beijing 100083, China
    These authors contributed equally to this work.)

  • Ziyan Wang

    (Department of Mathematics, College of Science, Beijing Forestry University, Beijing 100083, China
    These authors contributed equally to this work.)

  • Yizhuo Liu

    (Department of Mathematics, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Jie Zhou

    (Department of Mathematics, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Chen Chen

    (Department of Mathematics, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Haoyuan Ma

    (Department of Mathematics, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Xi Huang

    (Department of Forestry (Urban Forestry), College of Forestry, Beijing Forestry University, Beijing 100083, China)

  • Hongqing Wang

    (Department of Mathematics, College of Science, Beijing Forestry University, Beijing 100083, China
    These authors also contributed equally to this work.)

  • Xiaodong Ji

    (Discipline of Civil Engineering, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    These authors also contributed equally to this work.)

Abstract

Aiming at the nonlinear, nonstationary, and multiscale fluctuation characteristics of wind speed series, this study proposes a wind speed-forecasting framework that integrates multi-resolution turbulence intensity features and a Transformer-based hybrid neural network. Firstly, based on multi-resolution turbulence intensity and stationary wavelet transform (SWT), the original wind speed series is decomposed into eight pairs of mean wind speeds and turbulence intensities at different time scales, which are then modeled and predicted in parallel using eight independent LSTM sub-models. Unlike traditional methods treating meteorological variables such as air pressure, temperature, and wind direction as static input features, WaveNet, LSTM, and TCN neural networks are innovatively adopted here to independently model and forecast these meteorological series, thoroughly capturing their dynamic influences on wind speed. Finally, a Transformer-based self-attention mechanism dynamically integrates multiple outputs from the four sub-models to generate final wind speed predictions. Experimental results averaged over three datasets demonstrate superior accuracy and robustness, with MAE, RMSE, MAPE, and R 2 values around 0.65, 0.87, 23.24%, and 0.92, respectively, for a 6 h forecast horizon. Moreover, the proposed framework consistently outperforms all baselines across four categories of comparative experiments, showing strong potential for practical applications in wind power dispatching.

Suggested Citation

  • Hongbin Liu & Ziyan Wang & Yizhuo Liu & Jie Zhou & Chen Chen & Haoyuan Ma & Xi Huang & Hongqing Wang & Xiaodong Ji, 2025. "A Transformer-Based Hybrid Neural Network Integrating Multiresolution Turbulence Intensity and Independent Modeling of Multiple Meteorological Features for Wind Speed Forecasting," Energies, MDPI, vol. 18(17), pages 1-38, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4571-:d:1736588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    2. Xu, Li & Ou, Yanxia & Cai, Jingjing & Wang, Jin & Fu, Yang & Bian, Xiaoyan, 2023. "Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition," Renewable Energy, Elsevier, vol. 216(C).
    3. Bommidi, Bala Saibabu & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function," Energy, Elsevier, vol. 265(C).
    4. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    5. Athraa Ali Kadhem & Noor Izzri Abdul Wahab & Ishak Aris & Jasronita Jasni & Ahmed N. Abdalla, 2017. "Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network," Energies, MDPI, vol. 10(11), pages 1-17, October.
    6. Yu, Chuanjin & Fu, Suxiang & Wei, ZiWei & Zhang, Xiaochi & Li, Yongle, 2024. "Multi-feature-fused generative neural network with Gaussian mixture for multi-step probabilistic wind speed prediction," Applied Energy, Elsevier, vol. 359(C).
    7. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    8. Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.
    9. Jianzhou Wang & Qingping Zhou & Haiyan Jiang & Ru Hou, 2015. "Short-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-13, July.
    10. Wang, Yun & Wang, Jianzhou & Wei, Xiang, 2015. "A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China," Energy, Elsevier, vol. 91(C), pages 556-572.
    11. Kim, Soo-Hyun & Shin, Hyung-Ki & Joo, Young-Chul & Kim, Keon-Hoon, 2015. "A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm," Renewable Energy, Elsevier, vol. 74(C), pages 536-543.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    2. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    3. Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
    4. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    5. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    6. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    7. Ming Pang & Lei Zhang & Yajun Zhang & Ao Zhou & Jianming Dou & Zhepeng Deng, 2022. "Ultra-Short-Term Wind Speed Forecasting Using the Hybrid Model of Subseries Reconstruction and Broad Learning System," Energies, MDPI, vol. 15(12), pages 1-21, June.
    8. Wang, Jujie & Jiang, Weiyi & Shu, Shuqin & He, Xuecheng, 2025. "A multi-factor clustering integration paradigm for wind speed point-interval prediction based on feature selection and optimized inverted transformer," Energy, Elsevier, vol. 320(C).
    9. Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.
    10. Yuansheng Huang & Shijian Liu & Lei Yang, 2018. "Wind Speed Forecasting Method Using EEMD and the Combination Forecasting Method Based on GPR and LSTM," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    11. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    12. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    13. Shengcai Zhang & Changsheng Zhu & Xiuting Guo, 2024. "Wind-Speed Multi-Step Forecasting Based on Variational Mode Decomposition, Temporal Convolutional Network, and Transformer Model," Energies, MDPI, vol. 17(9), pages 1-22, April.
    14. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    15. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    16. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    17. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    18. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    19. Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
    20. Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4571-:d:1736588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.