IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033935.html
   My bibliography  Save this article

Neural network informed day-ahead scheduling of pumped hydro energy storage

Author

Listed:
  • Favaro, Pietro
  • Dolányi, Mihály
  • Vallée, François
  • Toubeau, Jean-François

Abstract

This paper presents a neural network-constrained optimization model for the optimal scheduling of pumped hydro energy storage. Neural networks are trained offline to capture the complex head-dependent performance curves in both pump and turbine modes using actual operation data. The trained models are then embedded into the optimization framework that yields the optimal and physics-compliant day-ahead scheduling in energy and reserve markets for the pumped hydro energy storage. To identify the trade-off between modeling accuracy and computation burden, different neural network architectures are investigated, along with the impact of neural network sparsity, i.e., weights pruning to reduce dimensionality. The proposed approach is then compared with state-of-the-art solutions, such as piecewise linear approximations. To that end, a detailed simulator of the pumped hydro energy storage, mimicking its minute-wise behavior, is developed to accurately assess the feasibility and economic performance of the resulting schedules. Results demonstrate the ability of neural networks to better guide the optimization model, thus leading to higher profits while keeping acceptable solving times, especially when weight pruning is leveraged. In particular, we show that accurately capturing the non-linear characteristics of pumped hydro energy storage is critical to offer reliable reserve commitments to power systems.

Suggested Citation

  • Favaro, Pietro & Dolányi, Mihály & Vallée, François & Toubeau, Jean-François, 2024. "Neural network informed day-ahead scheduling of pumped hydro energy storage," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033935
    DOI: 10.1016/j.energy.2023.129999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.