IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i3d10.1007_s11269-023-03693-9.html
   My bibliography  Save this article

Multi—Objective Reservoir Operation Optimization by Considering Ecosystem Sustainability and Ecological Targets

Author

Listed:
  • Hamed Yazdian

    (University of Isfahan)

  • Banafsheh Zahraie

    (University of Tehran)

  • Neamatollah Jaafarzadeh

    (Ahvaz Jundishapur University of Medical Sciences)

Abstract

In this study, variations of macroinvertebrates are considered as a criterion for assessing biological diversity and ecosystem health in the downstream reach of a river-reservoir system. Unlike most of the previous studies, this biological diversity index is then used in a multi-objective reservoir operation optimization model as an objective function instead of a constraint. Two objectives of supplying water demand and ecological diversity were maximized for the case of the Aboulabbas Dam in Khuzestan Province in southwest of Iran. Based on the historical records of water quality and macroinvertebrate samples, a relationship between these two parameters was used in the optimization model formulation. Evaluation of the results in a 10-year period and comparison with single-objective optimization shows that using the proposed methodology, the biodiversity and ecosystem health has been improved while achieving an acceptable level of water supply reliability.

Suggested Citation

  • Hamed Yazdian & Banafsheh Zahraie & Neamatollah Jaafarzadeh, 2024. "Multi—Objective Reservoir Operation Optimization by Considering Ecosystem Sustainability and Ecological Targets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 881-892, February.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03693-9
    DOI: 10.1007/s11269-023-03693-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03693-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03693-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yubin Chen & Manlin Wang & Yu Zhang & Yan Lu & Bin Xu & Lei Yu, 2023. "Cascade Hydropower System Operation Considering Ecological Flow Based on Different Multi-Objective Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3093-3110, June.
    2. Ziyu Ding & Guohua Fang & Xin Wen & Qiaofeng Tan & Xiaohui Lei & Zhehua Liu & Xianfeng Huang, 2020. "Cascaded Hydropower Operation Chart Optimization Balancing Overall Ecological Benefits and Ecological Conservation in Hydrological Extremes Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1231-1246, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruby Jose & Srinivasan K, 2025. "Multi-Objective Modeling Framework for Environmental Flow Optimization in a River-Reservoir System Using Histogram Comparison Approach for Estimation of Hydrologic Alteration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 439-458, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohui Shen & Yonggang Wu & Lingxi Li & Peng He & Tongxin Zhang, 2024. "A Novel Hybrid Algorithm Based on Beluga Whale Optimization and Harris Hawks Optimization for Optimizing Multi-Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4883-4909, September.
    2. You-Da Jhong & Chang-Shian Chen & Bing-Chen Jhong & Cheng-Han Tsai & Song-Yue Yang, 2024. "Optimization of LSTM Parameters for Flash Flood Forecasting Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 1141-1164, February.
    3. Yubin Chen & Manlin Wang & Yu Zhang & Yan Lu & Bin Xu & Lei Yu, 2023. "Cascade Hydropower System Operation Considering Ecological Flow Based on Different Multi-Objective Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3093-3110, June.
    4. Zhong, Ruida & Zhao, Tongtiegang & Chen, Xiaohong, 2021. "Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?," Energy, Elsevier, vol. 237(C).
    5. Favaro, Pietro & Dolányi, Mihály & Vallée, François & Toubeau, Jean-François, 2024. "Neural network informed day-ahead scheduling of pumped hydro energy storage," Energy, Elsevier, vol. 289(C).
    6. Tao Bai & Lei Li & Peng-fei Mu & Bao-zhu Pan & Jin Liu, 2023. "Impact of Climate Change on Water Transfer Scale of Inter-basin Water Diversion Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2505-2525, May.
    7. Ding, Ziyu & Fang, Guohua & Wen, Xin & Tan, Qiaofeng & Mao, Yingchi & Zhang, Yu, 2024. "Long-term operation rules of a hydro–wind–photovoltaic hybrid system considering forecast information," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03693-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.