IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i3d10.1007_s11269-023-03713-8.html
   My bibliography  Save this article

Optimization of LSTM Parameters for Flash Flood Forecasting Using Genetic Algorithm

Author

Listed:
  • You-Da Jhong

    (Feng Chia University)

  • Chang-Shian Chen

    (Feng Chia University)

  • Bing-Chen Jhong

    (National Taiwan University of Science and Technology)

  • Cheng-Han Tsai

    (Feng Chia University)

  • Song-Yue Yang

    (Feng Chia University)

Abstract

Accurate flood forecasts provide a critical time for authorities and the public to enact flood response measures and initiate evacuations. Long short-term memory (LSTM) is widely used in flood forecasting to ensure sufficient response time. The lag length of rainfall (LR), the number of hidden layers (NL), and the number of neurons (NN) are key parameters of the LSTM model. However, flood forecasting research seldom explores their optimization via the Genetic Algorithm (GA). This study introduces a novel LSTM-GA model, which integrates LSTM with GA to optimize the LR, NL, and NN for flash flood forecasting. The case study pertains to the water level forecasting of the Wu River in Taiwan. To assess the improvement brought by the proposed model, a standard LSTM model was utilized as a benchmark. This model accurately forecasted floods in the next 1 to 6 h, achieving a Nash–Sutcliffe efficiency coefficient (NSE) score ranging from 0.896 to 0.906. It also exhibited strong flood peak forecast performance. The integration of GA enhanced the LSTM’s forecasting accuracy, with NSE scores rising to between 0.917 and 0.931. Notably, a shorter forecast lead time augmented the degree of improvement. In the LSTM model, LR was set as the river’s concentration time, and NL represented the water storage function of the watershed. For short lead time forecasting, surface runoff was the dominant factor, leading to smaller optimized values for LR and NL. Conversely, long lead time forecasting needed to consider the impact of subsurface and groundwater runoff, resulting in larger optimized values for LR and NL. In conclusion, the parameters optimized through GA consider the watershed’s characteristics.

Suggested Citation

  • You-Da Jhong & Chang-Shian Chen & Bing-Chen Jhong & Cheng-Han Tsai & Song-Yue Yang, 2024. "Optimization of LSTM Parameters for Flash Flood Forecasting Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 1141-1164, February.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03713-8
    DOI: 10.1007/s11269-023-03713-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03713-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03713-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    2. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    3. Yubin Chen & Manlin Wang & Yu Zhang & Yan Lu & Bin Xu & Lei Yu, 2023. "Cascade Hydropower System Operation Considering Ecological Flow Based on Different Multi-Objective Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3093-3110, June.
    4. Huseyin Cagan Kilinc & Iman Ahmadianfar & Vahdettin Demir & Salim Heddam & Ahmed M. Al-Areeq & Sani I. Abba & Mou Leong Tan & Bijay Halder & Haydar Abdulameer Marhoon & Zaher Mundher Yaseen, 2023. "Daily Scale River Flow Forecasting Using Hybrid Gradient Boosting Model with Genetic Algorithm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3699-3714, July.
    5. Maryam Rahimzad & Alireza Moghaddam Nia & Hosam Zolfonoon & Jaber Soltani & Ali Danandeh Mehr & Hyun-Han Kwon, 2021. "Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4167-4187, September.
    6. Zhou, Yanting & Wang, Yanan & Wang, Kai & Kang, Le & Peng, Fei & Wang, Licheng & Pang, Jinbo, 2020. "Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors," Applied Energy, Elsevier, vol. 260(C).
    7. Stephen Stajkowski & Deepak Kumar & Pijush Samui & Hossein Bonakdari & Bahram Gharabaghi, 2020. "Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    8. Bulent Haznedar & Huseyin Cagan Kilinc, 2022. "A Hybrid ANFIS-GA Approach for Estimation of Hydrological Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4819-4842, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songsong Wang & Ouguan Xu, 2025. "Exploring a long short-term memory for mountain flood forecasting based on watershed-internal knowledge graph and large language model," PLOS ONE, Public Library of Science, vol. 20(3), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Zhou, Yanting & Wang, Yanan & Wang, Kai & Kang, Le & Peng, Fei & Wang, Licheng & Pang, Jinbo, 2020. "Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors," Applied Energy, Elsevier, vol. 260(C).
    3. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    4. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    5. Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    6. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    7. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    8. Hamed Yazdian & Banafsheh Zahraie & Neamatollah Jaafarzadeh, 2024. "Multi—Objective Reservoir Operation Optimization by Considering Ecosystem Sustainability and Ecological Targets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 881-892, February.
    9. Hanqi Zhang & Xiaoxuan Jiang & Si Peng & Kecen Zhou & Zhinan Xu & Xiangrong Wang, 2025. "Coupled Risk Assessment of Flood Before and During Disaster Based on Machine Learning," Sustainability, MDPI, vol. 17(10), pages 1-30, May.
    10. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    11. Prashant Parasar & Poonam Moral & Aman Srivastava & Akhouri Pramod Krishna & Richa Sharma & Virendra Singh Rathore & Abhijit Mustafi & Arun Pratap Mishra & Fahdah Falah Ben Hasher & Mohamed Zhran, 2025. "TeaNet: An Enhanced Attention Network for Climate-Resilient River Discharge Forecasting Under CMIP6 SSP585 Projections," Sustainability, MDPI, vol. 17(9), pages 1-28, May.
    12. Heon Baek, 2024. "A CNN-LSTM Stock Prediction Model Based on Genetic Algorithm Optimization," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 205-220, June.
    13. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    14. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    15. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    16. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    17. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    18. Kai Wang & Wanli Wang & Licheng Wang & Liwei Li, 2020. "An Improved SOC Control Strategy for Electric Vehicle Hybrid Energy Storage Systems," Energies, MDPI, vol. 13(20), pages 1-13, October.
    19. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    20. Xiaohui Shen & Yonggang Wu & Lingxi Li & Peng He & Tongxin Zhang, 2024. "A Novel Hybrid Algorithm Based on Beluga Whale Optimization and Harris Hawks Optimization for Optimizing Multi-Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4883-4909, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03713-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.