IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3560-d268046.html
   My bibliography  Save this article

Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation

Author

Listed:
  • Shree Krishna Acharya

    (Department of Electronics Engineering, Mokpo National University, Muan 58554, Korea)

  • Young-Min Wi

    (School of Electrical and Electronic Engineering, Gwangju University, Gwangju 61743, Korea)

  • Jaehee Lee

    (Department of Information and Electronics Engineering, Mokpo National University, Muan 58554, Korea)

Abstract

Advanced metering infrastructure (AMI) is spreading to households in some countries, and could be a source for forecasting the residential electric demand. However, load forecasting of a single household is still a fairly challenging topic because of the high volatility and uncertainty of the electric demand of households. Moreover, there is a limitation in the use of historical load data because of a change in house ownership, change in lifestyle, integration of new electric devices, and so on. The paper proposes a novel method to forecast the electricity loads of single residential households. The proposed forecasting method is based on convolution neural networks (CNNs) combined with a data-augmentation technique, which can artificially enlarge the training data. This method can address issues caused by a lack of historical data and improve the accuracy of residential load forecasting. Simulation results illustrate the validation and efficacy of the proposed method.

Suggested Citation

  • Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3560-:d:268046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
    2. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    3. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Massaoudi & Shady S. Refaat & Haitham Abu-Rub & Ines Chihi & Fakhreddine S. Oueslati, 2020. "PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting," Energies, MDPI, vol. 13(20), pages 1-29, October.
    2. Antonio Gabaldón & María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez, 2022. "Guest Editorial: Special Issue on Short-Term Load Forecasting 2019, Results and Future Perspectives," Energies, MDPI, vol. 15(24), pages 1-5, December.
    3. Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.
    4. Ping Ma & Shuhui Cui & Mingshuai Chen & Shengzhe Zhou & Kai Wang, 2023. "Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System," Energies, MDPI, vol. 16(15), pages 1-17, August.
    5. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    6. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
    8. Grzegorz Dudek, 2021. "Short-Term Load Forecasting Using Neural Networks with Pattern Similarity-Based Error Weights," Energies, MDPI, vol. 14(11), pages 1-18, May.
    9. Feras Alasali & Husam Foudeh & Esraa Mousa Ali & Khaled Nusair & William Holderbaum, 2021. "Forecasting and Modelling the Uncertainty of Low Voltage Network Demand and the Effect of Renewable Energy Sources," Energies, MDPI, vol. 14(8), pages 1-31, April.
    10. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2021. "Weather Data Mixing Models for Day-Ahead PV Forecasting in Small-Scale PV Plants," Energies, MDPI, vol. 14(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Davut Solyali, 2020. "A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus," Sustainability, MDPI, vol. 12(9), pages 1-34, April.
    3. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    4. Fatma Yaprakdal & M. Berkay Yılmaz & Mustafa Baysal & Amjad Anvari-Moghaddam, 2020. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    5. Guixiang Xue & Yu Pan & Tao Lin & Jiancai Song & Chengying Qi & Zhipan Wang, 2019. "District Heating Load Prediction Algorithm Based on Feature Fusion LSTM Model," Energies, MDPI, vol. 12(11), pages 1-21, June.
    6. Fatma Yaprakdal, 2022. "An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods," Energies, MDPI, vol. 16(1), pages 1-13, December.
    7. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    9. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
    10. Fei Teng & Yafei Song & Xinpeng Guo, 2021. "Attention-TCN-BiGRU: An Air Target Combat Intention Recognition Model," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    11. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    12. Shrestha, Yash Raj & Krishna, Vaibhav & von Krogh, Georg, 2021. "Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges," Journal of Business Research, Elsevier, vol. 123(C), pages 588-603.
    13. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    14. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    15. V. Y. Kondaiah & B. Saravanan, 2022. "Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method," Energies, MDPI, vol. 15(14), pages 1-17, July.
    16. Mst. Shapna Akter & Hossain Shahriar & Reaz Chowdhury & M. R. C. Mahdy, 2022. "Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach," Future Internet, MDPI, vol. 14(9), pages 1-23, August.
    17. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    18. Sepehr Moalem & Roya M. Ahari & Ghazanfar Shahgholian & Majid Moazzami & Seyed Mohammad Kazemi, 2022. "Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    19. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    20. Bulent Haznedar & Huseyin Cagan Kilinc & Furkan Ozkan & Adem Yurtsever, 2023. "Streamflow forecasting using a hybrid LSTM-PSO approach: the case of Seyhan Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 681-701, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3560-:d:268046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.