IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5464-d431259.html
   My bibliography  Save this article

PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting

Author

Listed:
  • Mohamed Massaoudi

    (Department of Electrical and Computer Engineering, Texas A and M University at Qatar, Doha 3263, Qatar
    Unité de Recherche de Physique des Semi-Conducteurs et Capteurs, Carthage University, Tunis 2070, Tunisia)

  • Shady S. Refaat

    (Department of Electrical and Computer Engineering, Texas A and M University at Qatar, Doha 3263, Qatar)

  • Haitham Abu-Rub

    (Department of Electrical and Computer Engineering, Texas A and M University at Qatar, Doha 3263, Qatar)

  • Ines Chihi

    (Laboratory of Energy Applications and Renewable Energy Efficiency (LAPER), El Manar University, Tunis 1002, Tunisia)

  • Fakhreddine S. Oueslati

    (Unité de Recherche de Physique des Semi-Conducteurs et Capteurs, Carthage University, Tunis 2070, Tunisia)

Abstract

This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques.

Suggested Citation

  • Mohamed Massaoudi & Shady S. Refaat & Haitham Abu-Rub & Ines Chihi & Fakhreddine S. Oueslati, 2020. "PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting," Energies, MDPI, vol. 13(20), pages 1-29, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5464-:d:431259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Caro & Jesús Juan, 2020. "Short-Term Load Forecasting for Spanish Insular Electric Systems," Energies, MDPI, vol. 13(14), pages 1-26, July.
    2. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    3. Nguyen, Danh V. & Rocke, D.M.David M., 2004. "On partial least squares dimension reduction for microarray-based classification: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 407-425, June.
    4. Rae-Jun Park & Kyung-Bin Song & Bo-Sung Kwon, 2020. "Short-Term Load Forecasting Algorithm Using a Similar Day Selection Method Based on Reinforcement Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
    5. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    6. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    7. Yongquan Dong & Zichen Zhang & Wei-Chiang Hong, 2018. "A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-21, April.
    8. Gabriel Trierweiler Ribeiro & João Guilherme Sauer & Naylene Fraccanabbia & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting," Energies, MDPI, vol. 13(9), pages 1-19, May.
    9. Yi Yang & Zhihao Shang & Yao Chen & Yanhua Chen, 2020. "Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting," Energies, MDPI, vol. 13(3), pages 1-19, January.
    10. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    11. Happy Aprillia & Hong-Tzer Yang & Chao-Ming Huang, 2019. "Optimal Decomposition and Reconstruction of Discrete Wavelet Transformation for Short-Term Load Forecasting," Energies, MDPI, vol. 12(24), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadeusz A. Grzeszczyk & Michal K. Grzeszczyk, 2022. "Justifying Short-Term Load Forecasts Obtained with the Use of Neural Models," Energies, MDPI, vol. 15(5), pages 1-20, March.
    2. Bhaskar Tripathi & Rakesh Kumar Sharma, 2023. "Modeling Bitcoin Prices using Signal Processing Methods, Bayesian Optimization, and Deep Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1919-1945, December.
    3. Yu Jin & Honggang Guo & Jianzhou Wang & Aiyi Song, 2020. "A Hybrid System Based on LSTM for Short-Term Power Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-32, November.
    4. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    5. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    2. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    3. Yamin Shen & Yuxuan Ma & Simin Deng & Chiou-Jye Huang & Ping-Huan Kuo, 2021. "An Ensemble Model based on Deep Learning and Data Preprocessing for Short-Term Electrical Load Forecasting," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    4. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    5. Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
    6. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    7. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    8. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    9. Bo Hu & Jian Xu & Zuoxia Xing & Pengfei Zhang & Jia Cui & Jinglu Liu, 2022. "Short-Term Combined Forecasting Method of Park Load Based on CEEMD-MLR-LSSVR-SBO," Energies, MDPI, vol. 15(8), pages 1-14, April.
    10. Wang, Xiao & Sun, Xiao-Xue & Chu, Shu-Chuan & Watada, Junzo & Pan, Jeng-Shyang, 2023. "Improved butterfly optimization algorithm applied to prediction of combined cycle power plant," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 337-353.
    11. Zaki Masood & Rahma Gantassi & Ardiansyah & Yonghoon Choi, 2022. "A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting," Energies, MDPI, vol. 15(7), pages 1-11, April.
    12. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    13. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    14. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    15. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    16. Huang, Qian & Li, Jinghua & Zhu, Mengshu, 2020. "An improved convolutional neural network with load range discretization for probabilistic load forecasting," Energy, Elsevier, vol. 203(C).
    17. Lu, Renzhi & Bai, Ruichang & Huang, Yuan & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2021. "Data-driven real-time price-based demand response for industrial facilities energy management," Applied Energy, Elsevier, vol. 283(C).
    18. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    19. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    20. Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5464-:d:431259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.