IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923000399.html
   My bibliography  Save this article

Two-stage robust unit commitment with the cascade hydropower stations retrofitted with pump stations

Author

Listed:
  • Ju, Chang
  • Ding, Tao
  • Jia, Wenhao
  • Mu, Chenggang
  • Zhang, Hongji
  • Sun, Yuge

Abstract

Cascade hydropower stations are excellent flexible resources to regulate the drastic fluctuations of wind and photovoltaic power generation in the hybrid energy system. By constructing pump stations between two adjacent upstream and downstream reservoirs, the conventional cascade hydropower stations can be transformed into a cascade pumped hydro energy storage (CPHES) system, which further can promote the integration of clean energy resources. In this paper, a two-stage robust unit commitment model for the cascade hydropower stations retrofitted with pump stations is established to address the renewable energy uncertainties. A short-term scheduling framework is proposed for the hybrid energy system including CPHES, which coordinates the operating cost and clean energy curtailment. Besides, a modified nested column-and-constraint algorithm is employed to solve the two-stage robust optimization problem with integer resources. Numerical tests performed on a modified IEEE 24-bus system and a large-scale practical power system verify the effectiveness of the proposed scheduling model and algorithm.

Suggested Citation

  • Ju, Chang & Ding, Tao & Jia, Wenhao & Mu, Chenggang & Zhang, Hongji & Sun, Yuge, 2023. "Two-stage robust unit commitment with the cascade hydropower stations retrofitted with pump stations," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000399
    DOI: 10.1016/j.apenergy.2023.120675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    2. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    3. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    4. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).
    5. Zhang, Yi & Cheng, Chuntian & Cai, Huaxiang & Jin, Xiaoyu & Jia, Zebin & Wu, Xinyu & Su, Huaying & Yang, Tiantian, 2022. "Long-term stochastic model predictive control and efficiency assessment for hydro-wind-solar renewable energy supply system," Applied Energy, Elsevier, vol. 316(C).
    6. Hunt, Julian David & Freitas, Marcos Aurélio Vasconcelos de & Pereira Junior, Amaro Olímpio, 2017. "A review of seasonal pumped-storage combined with dams in cascade in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 385-398.
    7. Denholm, Paul & Brinkman, Greg & Mai, Trieu, 2018. "How low can you go? The importance of quantifying minimum generation levels for renewable integration," Energy Policy, Elsevier, vol. 115(C), pages 249-257.
    8. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    9. Zou, Peng & Chen, Qixin & Yu, Yang & Xia, Qing & Kang, Chongqing, 2017. "Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap," Applied Energy, Elsevier, vol. 185(P1), pages 56-67.
    10. Vakalis, Stergios & Kaffas, Konstantinos & Moustakas, Konstantinos, 2020. "The water-energy-climate nexus concept of “Hydrobattery”: Storing excess Variable Renewable Energy (VRE) at the Canyon Ferry Dam," Renewable Energy, Elsevier, vol. 155(C), pages 547-554.
    11. Hunt, Julian David & Freitas, Marcos Aurélio Vasconcelos & Pereira Junior, Amaro Olímipio, 2014. "Enhanced-Pumped-Storage: Combining pumped-storage in a yearly storage cycle with dams in cascade in Brazil," Energy, Elsevier, vol. 78(C), pages 513-523.
    12. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    13. Sun, Kaiqi & Li, Ke-Jun & Pan, Jiuping & Liu, Yong & Liu, Yilu, 2019. "An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic complementary power generation system," Applied Energy, Elsevier, vol. 242(C), pages 1155-1163.
    14. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    15. Isuru, Mohasha & Hotz, Matthias & Gooi, H.B. & Utschick, Wolfgang, 2020. "Network-constrained thermal unit commitment fortexhybrid AC/DC transmission grids under wind power uncertainty," Applied Energy, Elsevier, vol. 258(C).
    16. Kougias, Ioannis & Szabó, Sándor & Monforti-Ferrario, Fabio & Huld, Thomas & Bódis, Katalin, 2016. "A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems," Renewable Energy, Elsevier, vol. 87(P2), pages 1023-1030.
    17. Wang, Fengjuan & Xie, Yachen & Xu, Jiuping, 2019. "Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Jiang, Ruiwei & Zhang, Muhong & Li, Guang & Guan, Yongpei, 2014. "Two-stage network constrained robust unit commitment problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 751-762.
    19. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    20. Ak, Mümtaz & Kentel, Elcin & Savasaneril, Secil, 2019. "Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system," Renewable Energy, Elsevier, vol. 139(C), pages 739-752.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Li & Feilong Hong & Xiaohui Ge & Xuesong Zhang & Bo Zhao & Feng Wu, 2023. "Optimal Capacity Configuration of Pumped-Storage Units Used to Retrofit Cascaded Hydropower Stations," Energies, MDPI, vol. 16(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).
    2. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    4. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    5. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    6. Barbaros, Efe & Aydin, Ismail & Celebioglu, Kutay, 2021. "Feasibility of pumped storage hydropower with existing pricing policy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Julian David Hunt & Giacomo Falchetta & Behnam Zakeri & Andreas Nascimento & Paulo Smith Schneider & Natália Assis Brasil Weber & André Luiz Amarante Mesquita & Paulo Sergio Franco Barbosa & Nivalde J, 2020. "Hydropower impact on the river flow of a humid regional climate," Climatic Change, Springer, vol. 163(1), pages 379-393, November.
    8. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    9. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    10. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    11. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    12. Jakub Jurasz & Jerzy Mikulik & Paweł B. Dąbek & Mohammed Guezgouz & Bartosz Kaźmierczak, 2021. "Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis," Energies, MDPI, vol. 14(4), pages 1-24, February.
    13. Dallinger, Bettina & Schwabeneder, Daniel & Lettner, Georg & Auer, Hans, 2019. "Socio-economic benefit and profitability analyses of Austrian hydro storage power plants supporting increasing renewable electricity generation in Central Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 482-496.
    14. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    15. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    16. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    17. Hasan Huseyin Coban, 2023. "Hydropower Planning in Combination with Batteries and Solar Energy," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    18. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    19. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Diana Cantor & Andrés Ochoa & Oscar Mesa, 2022. "Total Variation-Based Metrics for Assessing Complementarity in Energy Resources Time Series," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.