IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics036054422302385x.html
   My bibliography  Save this article

Effect of uncertain operating conditions on the aerodynamic performance of high-pressure axial turbomachinery blades

Author

Listed:
  • Wang, Kun
  • Chen, Fu
  • Yu, Jianyang
  • Song, Yanping
  • Ghorbaniasl, Ghader

Abstract

The objective existence of uncertain operating conditions can cause significant variations in the aerodynamic performance of turbomachinery. This study presents a comprehensive investigation into the impact of six uncertain operating conditions on the aerodynamic performance of a turbine. Additionally, a global sensitivity analysis was performed to identify the most important operating condition parameters. To reduce the computational cost of uncertainty quantification (UQ), a new UQ framework, the Nested Sparse-grid Stochastic Collocation Method (NSSCM), is used. It has been observed that uncertain operating conditions can lead to significant variations in energy loss, which in turn directly impacts the operating efficiency of the turbine. This research finds that the suction surface and trailing edge of the blade are particularly sensitive to uncertain operating conditions. The impact of uncertainty on the static pressure coefficient decreases as the flow develops, while the uncertainty of the Mach number and energy loss coefficient increases. Inlet total pressure and outlet static pressure are the primary factors impacting turbomachinery aerodynamics, as determined by sensitivity analysis. This study provides new insights into the impact of uncertain operating conditions on turbine efficiency and can guide the development of more robust turbine designs in the future.

Suggested Citation

  • Wang, Kun & Chen, Fu & Yu, Jianyang & Song, Yanping & Ghorbaniasl, Ghader, 2023. "Effect of uncertain operating conditions on the aerodynamic performance of high-pressure axial turbomachinery blades," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302385x
    DOI: 10.1016/j.energy.2023.128991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302385X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302385x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.