IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223011118.html
   My bibliography  Save this article

Application of the theory of constraints to unveil the root causes of the limited market penetration of micro gas turbine systems

Author

Listed:
  • Tilocca, Giuseppe
  • Sánchez, David
  • Torres-García, Miguel

Abstract

Micro Gas Turbines are small devices for on-site power and heat generation. Their high maintainability and fuel flexibility make them a suitable technology for transitioning to a greener economy. However, their commercialisation did not match the stakeholders’ expectations. The authors applied the Theory of Constraints – a methodology for the continuous improvement of systems – to the MGT industry introducing a structured and rigorous representation. The constraint – i.e. Root Cause – Analysis identified which entities sustain the cause–effect chain, eventually generating the Undesired Effects. The system constraints link to the specificity and effectiveness of commercialisation strategies and product innovation in agreement with evolutionary market theories. Moreover, the Theory of Constraints emphasises the presence of reinforcement loops that make targeting entities like high product costs ineffective. The missing piece to complete the puzzle is solving a logic block representing the product’s market competitiveness depending on economic and technical factors. This study suggests that combining market-driven innovation and commercialisation is likely the only long-term solution to the lack of commercial success of the technology. However, the work also highlights limitations in the proposed methodology and solutions. To tackle these, the authors suggest and introduce numerical frameworks based on the Theory of Constraint.

Suggested Citation

  • Tilocca, Giuseppe & Sánchez, David & Torres-García, Miguel, 2023. "Application of the theory of constraints to unveil the root causes of the limited market penetration of micro gas turbine systems," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011118
    DOI: 10.1016/j.energy.2023.127717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Mintz, Marianne M. & Snyder, Seth W., 2015. "An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 346-362.
    2. Sinigaglia, Tiago & Eduardo Santos Martins, Mario & Cezar Mairesse Siluk, Julio, 2022. "Technological evolution of internal combustion engine vehicle: A patent data analysis," Applied Energy, Elsevier, vol. 306(PA).
    3. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    4. Marina Montero Carrero & Irene Rodríguez Sánchez & Ward De Paepe & Alessandro Parente & Francesco Contino, 2019. "Is There a Future for Small-Scale Cogeneration in Europe? Economic and Policy Analysis of the Internal Combustion Engine, Micro Gas Turbine and Micro Humid Air Turbine Cycles," Energies, MDPI, vol. 12(3), pages 1-27, January.
    5. Alarico Macor & Alberto Benato, 2020. "Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health," Energies, MDPI, vol. 13(5), pages 1-38, February.
    6. Xiao, Gang & Yang, Tianfeng & Liu, Huanlei & Ni, Dong & Ferrari, Mario Luigi & Li, Mingchun & Luo, Zhongyang & Cen, Kefa & Ni, Mingjiang, 2017. "Recuperators for micro gas turbines: A review," Applied Energy, Elsevier, vol. 197(C), pages 83-99.
    7. Caresana, F. & Pelagalli, L. & Comodi, G. & Renzi, M., 2014. "Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior," Applied Energy, Elsevier, vol. 124(C), pages 17-27.
    8. Chiaramonti, David & Rizzo, Andrea Maria & Spadi, Adriano & Prussi, Matteo & Riccio, Giovanni & Martelli, Francesco, 2013. "Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil," Applied Energy, Elsevier, vol. 101(C), pages 349-356.
    9. Johan Schot & Frank Geels, 2007. "Niches in evolutionary theories of technical change," Journal of Evolutionary Economics, Springer, vol. 17(5), pages 605-622, October.
    10. Verstraete, Dries & Bowkett, Carlos, 2015. "Impact of heat transfer on the performance of micro gas turbines," Applied Energy, Elsevier, vol. 138(C), pages 445-449.
    11. Smith, Amanda D. & Fumo, Nelson & Mago, Pedro J., 2011. "Spark spread - A screening parameter for combined heating and power systems," Applied Energy, Elsevier, vol. 88(5), pages 1494-1499, May.
    12. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    13. Galanti, Leandro & Massardo, Aristide F., 2011. "Micro gas turbine thermodynamic and economic analysis up to 500kWe size," Applied Energy, Elsevier, vol. 88(12), pages 4795-4802.
    14. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Verstraete, Dries & Bowkett, Carlos, 2015. "Impact of heat transfer on the performance of micro gas turbines," Applied Energy, Elsevier, vol. 138(C), pages 445-449.
    3. Alberto Benato & Alarico Macor, 2021. "Costs to Reduce the Human Health Toxicity of Biogas Engine Emissions," Energies, MDPI, vol. 14(19), pages 1-17, October.
    4. Chen, Jinli & Xiao, Gang & Ferrari, Mario Luigi & Yang, Tianfeng & Ni, Mingjiang & Cen, Kefa, 2020. "Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts," Renewable Energy, Elsevier, vol. 154(C), pages 187-200.
    5. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    6. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    7. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    8. Rovense, Francesco & Sebastián, Andrés & Abbas, Rubén & Romero, Manuel & González-Aguilar, José, 2023. "Performance map analysis of a solar-driven and fully unfired closed-cycle micro gas turbine," Energy, Elsevier, vol. 263(PB).
    9. Anna Stoppato & Alberto Benato, 2020. "Life Cycle Assessment of a Commercially Available Organic Rankine Cycle Unit Coupled with a Biomass Boiler," Energies, MDPI, vol. 13(7), pages 1-17, April.
    10. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    11. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    12. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    13. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    14. Jiecheng Zhu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Control Strategy for MGT Generation System Optimized by Improved WOA to Enhance Demand Response Capability," Energies, MDPI, vol. 12(16), pages 1-20, August.
    15. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    16. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    17. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    18. van den Bergh, Jeroen C.J.M., 2008. "Optimal diversity: Increasing returns versus recombinant innovation," Journal of Economic Behavior & Organization, Elsevier, vol. 68(3-4), pages 565-580, December.
    19. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    20. Chong, Cheng Tung & Hochgreb, Simone, 2017. "Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions," Applied Energy, Elsevier, vol. 185(P2), pages 1383-1392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.