IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222023064.html
   My bibliography  Save this article

Use of a multiphysics model to investigate the performance and degradation of lithium-ion battery packs with different electrical configurations

Author

Listed:
  • Kim, Hong-Keun
  • Lee, Kyu-Jin

Abstract

An inconsistency within lithium-ion batteries (LIBs) in a battery pack can lead to reduced power as well as short cycle life. The cell-to-cell connection structure and thermal management in the battery pack affect the internal physics of each battery, resulting in different responses. This paper outlines modeling approaches to estimate the performance and life of battery packs in various situations using a full physics-based LIB pack model that covers all length scales of particles, electrodes, cells, and packs. With this model, two types of LIB packs with 4 parallel and 8 serial connections (4P8S) were investigated, and two connection structures were compared: the serial cells and parallel banks (SCPB) and the parallel cells and serial banks (PCSB) structure. The results showed that after 2000 cycles, the two LIB packs exhibited a similar distribution of cell degradation, but the SCPB pack produced slightly larger power energy than the PCSB pack. When one cell was defective, the two battery packs showed completely different behaviors. In the PCSB pack, current balancing suppressed the influence of the defective cell, resulting in better performance than the SCPB pack. These findings provide insight for the design of LIB packs with robust performance under various conditions.

Suggested Citation

  • Kim, Hong-Keun & Lee, Kyu-Jin, 2023. "Use of a multiphysics model to investigate the performance and degradation of lithium-ion battery packs with different electrical configurations," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023064
    DOI: 10.1016/j.energy.2022.125424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseinzadeh, Elham & Arias, Sebastian & Krishna, Muthu & Worwood, Daniel & Barai, Anup & Widanalage, Dhammika & Marco, James, 2021. "Quantifying cell-to-cell variations of a parallel battery module for different pack configurations," Applied Energy, Elsevier, vol. 282(PA).
    2. Liu, Rui & Chen, Jixin & Xun, Jingzhi & Jiao, Kui & Du, Qing, 2014. "Numerical investigation of thermal behaviors in lithium-ion battery stack discharge," Applied Energy, Elsevier, vol. 132(C), pages 288-297.
    3. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    4. Wassiliadis, Nikolaos & Ank, Manuel & Wildfeuer, Leo & Kick, Michael K. & Lienkamp, Markus, 2021. "Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications," Applied Energy, Elsevier, vol. 295(C).
    5. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    6. Hong-Keun Kim & Kyu-Jin Lee, 2020. "Scale-Up of Physics-Based Models for Predicting Degradation of Large Lithium Ion Batteries," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    7. E, Jiaqiang & Zhang, Bin & Zeng, Yan & Wen, Ming & Wei, Kexiang & Huang, Zhonghua & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2022. "Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge," Energy, Elsevier, vol. 238(PB).
    8. Lingxi Kong & Chuan Li & Jiuchun Jiang & Michael G. Pecht, 2018. "Li-Ion Battery Fire Hazards and Safety Strategies," Energies, MDPI, vol. 11(9), pages 1-11, August.
    9. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    10. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan, Zheng & Sida, Zhou & Zhengjie, Zhang & Xinan, Zhou & Rui, Cao & Qiangwei, Li & Zichao, Gao & Chengcheng, Fan & Shichun, Yang, 2024. "A capacity fade reliability model for lithium-ion battery packs based on real-vehicle data," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    2. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    3. Kumar, Kartik & Sarkar, Jahar & Mondal, Swasti Sundar, 2024. "Analysis of ternary hybrid nanofluid in microchannel-cooled cylindrical Li-ion battery pack using multi-scale multi-domain framework," Applied Energy, Elsevier, vol. 355(C).
    4. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Xiongbin Peng & Xujian Cui & Xiangping Liao & Akhil Garg, 2020. "A Thermal Investigation and Optimization of an Air-Cooled Lithium-Ion Battery Pack," Energies, MDPI, vol. 13(11), pages 1-20, June.
    6. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    7. Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
    8. Saw, Lip Huat & Ye, Yonghuang & Yew, Ming Chian & Chong, Wen Tong & Yew, Ming Kun & Ng, Tan Ching, 2017. "Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system," Applied Energy, Elsevier, vol. 204(C), pages 1489-1499.
    9. Chen, Quanyi & Zhang, Xuan & Nie, Pengbo & Zhang, Siwei & Wei, Guodan & Sun, Hongbin, 2023. "A fast thermal simulation and dynamic feedback control framework for lithium-ion batteries," Applied Energy, Elsevier, vol. 350(C).
    10. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    11. Astaneh, Majid & Andric, Jelena & Löfdahl, Lennart & Stopp, Peter, 2022. "Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications," Energy, Elsevier, vol. 239(PB).
    12. Klein, M. & Tong, S. & Park, J.W., 2016. "In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell," Applied Energy, Elsevier, vol. 165(C), pages 639-647.
    13. Kaur, Inderjot & Singh, Prashant, 2023. "Progress in minichannel-based thermal management of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    15. Liu, Yuanzhi & Zhang, Jie, 2019. "Design a J-type air-based battery thermal management system through surrogate-based optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Feng, Xuning & He, Xiangming & Ouyang, Minggao & Lu, Languang & Wu, Peng & Kulp, Christian & Prasser, Stefan, 2015. "Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery," Applied Energy, Elsevier, vol. 154(C), pages 74-91.
    17. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    18. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    19. Zhong, Hao & Lei, Fei & Zhu, Wenhao & Zhang, Zhe, 2022. "An operation efficacy-oriented predictive control management for power-redistributable lithium-ion battery pack," Energy, Elsevier, vol. 251(C).
    20. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.