IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222022447.html
   My bibliography  Save this article

Economic and energy evaluation of a solar multi-generation system powered by the parabolic trough collectors

Author

Listed:
  • Pourmoghadam, Peyman
  • Kasaeian, Alibakhsh

Abstract

Due to the increase in living standards, the increased energy consumption, and the depletion of fossil fuels, it is crucial to provide part of this demand through renewable energies. Due to the high potential of solar energy and its inherent variability over time, dynamic evaluation of a multi-generation system over a long time can examine the performance of such systems more precisely, which is rarely paid attention. In this study, a dynamic solar combined cooling, heating, power, and water production has been modeled with the help of MATLAB, EES, and TRNSYS software. Moreover, a phase change material energy storage unit has been used to store solar thermal energy and reuses the stored energy in case of low or without solar radiation modes. The desired configuration has been investigated from the energy and economic points of view. Also, sensitivity analysis and parametric studies have been done on the eight effective parameters. Evaluating various organic Rankine fluids illustrates that toluene has the best annual performance. Furthermore, the amounts of LCOW, LCOE, LCOC, and LCOH for the base case are 2.984 $/m3, 0.121 $/kWh, 0.064 $/kWh, and 0.019 $/kWh. Also, the payback period is determined 6 years for the base case.

Suggested Citation

  • Pourmoghadam, Peyman & Kasaeian, Alibakhsh, 2023. "Economic and energy evaluation of a solar multi-generation system powered by the parabolic trough collectors," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022447
    DOI: 10.1016/j.energy.2022.125362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melo, F.M. & Magnani, F.S. & Carvalho, M., 2022. "A decision-making method to choose optimal systems considering financial and environmental aspects: Application in hybrid CCHP systems," Energy, Elsevier, vol. 250(C).
    2. Calise, Francesco & d’Accadia, Massimo Dentice & Vicidomini, Maria, 2019. "Optimization and dynamic analysis of a novel polygeneration system producing heat, cool and fresh water," Renewable Energy, Elsevier, vol. 143(C), pages 1331-1347.
    3. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    4. Peláez-Peláez, Sofía & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Rosales, Ana-Esther & Rosales-Asensio, Enrique, 2021. "Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector," Energy, Elsevier, vol. 224(C).
    5. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    6. Miseta, Tamás & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2022. "Energy trading strategy for storage-based renewable power plants," Energy, Elsevier, vol. 250(C).
    7. Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
    8. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Hu, Eric & Zhang, Nan & Song, Jifeng, 2022. "Performance analysis and capacity optimization of a solar aided coal-fired combined heat and power system," Energy, Elsevier, vol. 239(PB).
    9. Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).
    10. Chen, Yuzhu & Hu, Xiaojian & Xu, Wentao & Xu, Qiliang & Wang, Jun & Lund, Peter D., 2022. "Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax," Energy, Elsevier, vol. 250(C).
    11. Rostamnejad Takleh, H. & Zare, V. & Mohammadkhani, F. & Sadeghiazad, M.M., 2022. "Proposal and thermoeconomic assessment of an efficient booster-assisted CCHP system based on solar-geothermal energy," Energy, Elsevier, vol. 246(C).
    12. Abdelhay, AymanO. & Fath, HassanE.S. & Nada, S.A., 2020. "Solar driven polygeneration system for power, desalination and cooling," Energy, Elsevier, vol. 198(C).
    13. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    14. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    15. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assareh, Ehsanolah & Karimi birgani, Kaveh & Agarwal, Neha & Arabkoohsar, Ahmad & Ghodrat, Maryam & Lee, Moonyong, 2023. "A transient study on a solar-assisted combined gas power cycle for sustainable multi-generation in hot and cold climates: Case studies of Dubai and Toronto," Energy, Elsevier, vol. 282(C).
    2. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    3. Wen, Xin & Ji, Jie & Li, Zhaomeng, 2023. "Evaluation of the phase change material in regulating all-day electrical performance in the PV-MCHP-TE system in winter," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Yiru & Zeng, Yipu, 2022. "Optimization of CCHP integrated with multiple load, replenished energy, and hybrid storage in different operation modes," Energy, Elsevier, vol. 260(C).
    2. Praveen Kumar, G. & Ayou, Dereje S. & Narendran, C. & Saravanan, R. & Maiya, M.P. & Coronas, Alberto, 2023. "Renewable heat powered polygeneration system based on an advanced absorption cycle for rural communities," Energy, Elsevier, vol. 262(PA).
    3. Ahmed S. Alsaman & Ahmed A. Hassan & Ehab S. Ali & Ramy H. Mohammed & Alaa E. Zohir & Ayman M. Farid & Ayman M. Zakaria Eraqi & Hamdy H. El-Ghetany & Ahmed A. Askalany, 2022. "Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend," Energies, MDPI, vol. 15(21), pages 1-25, October.
    4. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    5. Figaj, Rafał & Żołądek, Maciej, 2021. "Experimental and numerical analysis of hybrid solar heating and cooling system for a residential user," Renewable Energy, Elsevier, vol. 172(C), pages 955-967.
    6. Peer, Rebecca A.M. & Sanders, Kelly T., 2018. "The water consequences of a transitioning US power sector," Applied Energy, Elsevier, vol. 210(C), pages 613-622.
    7. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    8. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    9. Xiang Huang & Yapan Qu & Zhentao Zhu & Qiuchi Wu, 2023. "Techno-Economic Analysis of Photovoltaic Hydrogen Production Considering Technological Progress Uncertainty," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    10. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    12. Jie Ji & Fucheng Wang & Mengxiong Zhou & Renwei Guo & Rundong Ji & Hui Huang & Jiayu Zhang & Muhammad Shahzad Nazir & Tian Peng & Chu Zhang & Jiahui Huang & Yaodong Wang, 2022. "Evaluation Study on a Novel Structure CCHP System with a New Comprehensive Index Using Improved ALO Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    13. Benjamin Court & Thomas Elliot & Joseph Dammel & Thomas Buscheck & Jeremy Rohmer & Michael Celia, 2012. "Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO 2 sequestration," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 569-599, August.
    14. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    15. Sarı, Ahmet & Hekimoğlu, Gökhan & Tyagi, V.V. & Sharma, R.K., 2020. "Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters," Energy, Elsevier, vol. 207(C).
    16. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    17. Cao, Yue & Zhan, Jun & Jia, Boqing & Chen, Ranjing & Si, Fengqi, 2023. "Optimum design of bivariate operation strategy for a supercritical/ transcritical CO2 hybrid waste heat recovery system driven by gas turbine exhaust," Energy, Elsevier, vol. 284(C).
    18. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    19. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    20. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.