IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas0360544222021545.html
   My bibliography  Save this article

A partial heating supercritical CO2 nested transcritical CO2 cascade power cycle for marine engine waste heat recovery: Thermodynamic, economic, and footprint analysis

Author

Listed:
  • Wang, Zhe
  • Jiang, Yuemao
  • Ma, Yue
  • Han, Fenghui
  • Ji, Yulong
  • Cai, Wenjian

Abstract

A novel cascade system, in which the exhaust CO2 residual heat from a partial heating supercritical CO2 (SCO2) power cycle is reclaimed by a transcritical CO2 (TCO2) power cycle, is developed for onboard engine exhaust gas waste heat recovery. Firstly, thermodynamic analysis of the cascade system is carried out with the investigation of pinch points in heat exchangers. Then the influence of the topping cycle on the heat source condition of the bottom cycle is found, and the parametric study of the cascade system is performed from the viewpoint of thermodynamics, economy, and footprint. Further, the system comparison analysis with single-optimization is carried out to prove the superiority of the proposed system. Finally, the three-objective optimization is performed to maximize power output, minimize heat exchanger area per unit power and levelized cost of electricity. The results indicate that by integrating a TCO2 power cycle with the partial heating SCO2 cycle, system thermodynamic performance can increase by 15.35%. The recuperator effectiveness has a great impact on the bottoming cycle heat source temperature. The total heat recovery efficiency of the proposed system is improved by 22.64% and 20.24% respectively, compared with the simple SCO2-TCO2 combined cycle and the recuperative SCO2-TCO2 combined cycle. The multi-objective optimization results of the system performance are 841.84 kW, 0.2028 m2/kW, and 7.434 cent/kWh, respectively, with the 136 °C discharge temperature of the exhaust gas and 29.26% thermal efficiency. These results confirm the cascade system is attractive to waste heat recovery engineering, especially in space-constrained applications.

Suggested Citation

  • Wang, Zhe & Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian, 2022. "A partial heating supercritical CO2 nested transcritical CO2 cascade power cycle for marine engine waste heat recovery: Thermodynamic, economic, and footprint analysis," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021545
    DOI: 10.1016/j.energy.2022.125269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    2. Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
    3. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    4. Shu, Gequn & Yu, Guopeng & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization," Applied Energy, Elsevier, vol. 132(C), pages 325-338.
    5. Song, Jian & Li, Xue-song & Ren, Xiao-dong & Gu, Chun-wei, 2018. "Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 143(C), pages 406-416.
    6. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    8. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
    9. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    10. Kim, Min Seok & Ahn, Yoonhan & Kim, Beomjoo & Lee, Jeong Ik, 2016. "Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle," Energy, Elsevier, vol. 111(C), pages 893-909.
    11. Tozlu, Alperen & Abuşoğlu, Ayşegül & Özahi, Emrah, 2018. "Thermoeconomic analysis and optimization of a Re-compression supercritical CO2 cycle using waste heat of Gaziantep Municipal Solid Waste Power Plant," Energy, Elsevier, vol. 143(C), pages 168-180.
    12. Uusitalo, Antti & Ameli, Alireza & Turunen-Saaresti, Teemu, 2019. "Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery," Energy, Elsevier, vol. 167(C), pages 60-79.
    13. Yang, Yiping & Huang, Yulei & Jiang, Peixue & Zhu, Yinhai, 2020. "Multi-objective optimization of combined cooling, heating, and power systems with supercritical CO2 recompression Brayton cycle," Applied Energy, Elsevier, vol. 271(C).
    14. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    15. Bonalumi, Davide & Giuffrida, Antonio & Sicali, Federico, 2022. "Techno-economic investigations of supercritical CO2-based partial heating cycle as bottoming system of a small gas turbine," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yue & Zhan, Jun & Jia, Boqing & Chen, Ranjing & Si, Fengqi, 2023. "Optimum design of bivariate operation strategy for a supercritical/ transcritical CO2 hybrid waste heat recovery system driven by gas turbine exhaust," Energy, Elsevier, vol. 284(C).
    2. Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian & Wang, Zhe, 2023. "Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO2 cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian & Wang, Zhe, 2023. "Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO2 cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine," Energy, Elsevier, vol. 265(C).
    2. Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
    3. Li, Bo & Wang, Shun-sen, 2022. "Thermodynamic analysis and optimization of a hybrid cascade supercritical carbon dioxide cycle for waste heat recovery," Energy, Elsevier, vol. 259(C).
    4. Muhammad, Hafiz Ali & Cho, Junhyun & Cho, Jongjae & Choi, Bongsu & Roh, Chulwoo & Ishfaq, Hafiz Ahmad & Lee, Gilbong & Shin, Hyungki & Baik, Young-Jin & Lee, Beomjoon, 2022. "Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures," Energy, Elsevier, vol. 239(PD).
    5. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
    6. Tang, Junrong & Li, Qibin & Wang, Shukun & Yu, Haoshui, 2023. "Thermo-economic optimization and comparative analysis of different organic flash cycles for the supercritical CO2 recompression Brayton cycle waste heat recovery," Energy, Elsevier, vol. 278(PB).
    7. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    8. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
    9. Zhou, Aozheng & Li, Xue-song & Ren, Xiao-dong & Gu, Chun-wei, 2020. "Improvement design and analysis of a supercritical CO2/transcritical CO2 combined cycle for offshore gas turbine waste heat recovery," Energy, Elsevier, vol. 210(C).
    10. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
    11. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
    12. Son, Seongmin & Jeong, Yongju & Cho, Seong Kuk & Lee, Jeong Ik, 2020. "Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network," Applied Energy, Elsevier, vol. 263(C).
    13. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    14. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    15. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    16. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    17. Fan, Gang & Lu, Xiaochen & Chen, Kang & Zhang, Yicen & Han, Zihao & Yu, Haibin & Dai, Yiping, 2022. "Comparative analysis on design and off-design performance of novel cascade CO2 combined cycles for gas turbine waste heat utilization," Energy, Elsevier, vol. 254(PA).
    18. Syamimi Saadon & Nur Athirah Mohd Nasir, 2020. "Performance and Sustainability Analysis of an Organic Rankine Cycle System in Subcritical and Supercritical Conditions for Waste Heat Recovery," Energies, MDPI, vol. 13(12), pages 1-24, June.
    19. Cao, Yue & Rattner, Alexander S. & Dai, Yiping, 2018. "Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid," Energy, Elsevier, vol. 162(C), pages 1253-1268.
    20. Liu, Bohan & Lu, Mingjian & Shui, Bo & Sun, Yuwei & Wei, Wei, 2022. "Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.