IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222014050.html
   My bibliography  Save this article

A Decentralized Higher Order Sliding Mode Control for Islanded Photovoltaic-Storage Systems

Author

Listed:
  • Rosini, A.
  • Procopio, R.
  • Bonfiglio, A.
  • Incremona, G.P.
  • Ferrara, A.

Abstract

Sustainable energy transition, air pollution reduction and climate change mitigation are the most challenging themes in nowadays energy sector. Microgrids (MGs) are one of the most effective ways to integrate Renewable Energy Sources (RES), and among them PhotoVoltaic (PV)-Storage (ST) configuration is relevantly promising. Focusing the attention on the PV and ST converters primary control, the main needs are to properly regulate voltage and frequency and optimally exploit the energy coming from the sun and manage the ST operation without any communication among the converter controllers. The conventional converter control approach presents several drawbacks and thus a strategy based on Higher Order Sliding Mode (HOSM) is presented in this work. The HOSM converter control strategy is fully analysed defining its control laws and the control schemes. A comparison between the HOSM and conventional control is performed with dedicated simulations on a common benchmark MG in order to highlight the advantages of the proposed strategy.

Suggested Citation

  • Rosini, A. & Procopio, R. & Bonfiglio, A. & Incremona, G.P. & Ferrara, A., 2022. "A Decentralized Higher Order Sliding Mode Control for Islanded Photovoltaic-Storage Systems," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014050
    DOI: 10.1016/j.energy.2022.124502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiayi, Huang & Chuanwen, Jiang & Rong, Xu, 2008. "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2472-2483, December.
    2. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "Application of Model Predictive Control to BESS for Microgrid Control," Energies, MDPI, vol. 8(8), pages 1-16, August.
    3. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    4. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    5. Alessandro Palmieri & Alessandro Rosini & Renato Procopio & Andrea Bonfiglio, 2020. "An MPC-Sliding Mode Cascaded Control Architecture for PV Grid-Feeding Inverters," Energies, MDPI, vol. 13(9), pages 1-17, May.
    6. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele Mestriner & Alessandro Rosini & Iris Xhani & Andrea Bonfiglio & Renato Procopio, 2022. "Primary Voltage and Frequency Regulation in Inverter Based Islanded Microgrids through a Model Predictive Control Approach," Energies, MDPI, vol. 15(14), pages 1-19, July.
    2. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    3. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Adelina Jashari & Jana Lippelt & Marie-Theres von Schickfus, 2018. "Unexpected Rapid Fall of Wind and Solar Energy Prices: Backgrounds, Effects and Perspectives," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 19(02), pages 65-69, July.
    5. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    6. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    7. Christian Breyer & Mahdi Fasihi & Arman Aghahosseini, 2020. "Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 43-65, January.
    8. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    9. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    10. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    11. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    12. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    13. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    14. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
    15. Zhou, Kaile & Yang, Shanlin, 2015. "A framework of service-oriented operation model of China׳s power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 719-725.
    16. SungJoong Kim & YongTae Yoon & YoungGyu Jin, 2022. "Price-Guided Peer-To-Peer Trading Scheme and Its Effects on Transaction Costs and Network Losses," Energies, MDPI, vol. 15(21), pages 1-19, November.
    17. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    18. Chaurey, A. & Kandpal, T.C., 2010. "A techno-economic comparison of rural electrification based on solar home systems and PV microgrids," Energy Policy, Elsevier, vol. 38(6), pages 3118-3129, June.
    19. Robert Vermeulen & Edo Schets & Melanie Lohuis & Barbara Kolbl & David-Jan Jansen & Willem Heeringa, 2018. "An energy transition risk stress test for the financial system of the Netherlands," DNB Occasional Studies 1607, Netherlands Central Bank, Research Department.
    20. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.