IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5077-d860923.html
   My bibliography  Save this article

Primary Voltage and Frequency Regulation in Inverter Based Islanded Microgrids through a Model Predictive Control Approach

Author

Listed:
  • Daniele Mestriner

    (Naval, Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, Via All’Opera Pia 11a, 16145 Genoa, Italy)

  • Alessandro Rosini

    (Naval, Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, Via All’Opera Pia 11a, 16145 Genoa, Italy)

  • Iris Xhani

    (RINA Consulting S.p.A., Via A. Cecchi, 6-16129 Genoa, Italy)

  • Andrea Bonfiglio

    (Naval, Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, Via All’Opera Pia 11a, 16145 Genoa, Italy)

  • Renato Procopio

    (Naval, Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, Via All’Opera Pia 11a, 16145 Genoa, Italy)

Abstract

A frequency and voltage control strategy based on a decentralized and communication-less approach is proposed in this work and applied to Photovoltaic-Storage-Microturbine islanded Microgrids (MGs). The approach is based on the Model Predictive Control (MPC) technique. Thanks to the use of local measurements, each source can nullify the steady-state voltage and frequency errors by means of a dedicated MPC controller. Consequently, the proposed approach unifies the advantages of classic droop and master/slave controllers due to the absence of communication links among devices and due to the absence of a secondary centralized control loop.

Suggested Citation

  • Daniele Mestriner & Alessandro Rosini & Iris Xhani & Andrea Bonfiglio & Renato Procopio, 2022. "Primary Voltage and Frequency Regulation in Inverter Based Islanded Microgrids through a Model Predictive Control Approach," Energies, MDPI, vol. 15(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5077-:d:860923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiayi, Huang & Chuanwen, Jiang & Rong, Xu, 2008. "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2472-2483, December.
    2. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "Application of Model Predictive Control to BESS for Microgrid Control," Energies, MDPI, vol. 8(8), pages 1-16, August.
    3. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    4. Zhang, Yan & Meng, Fanlin & Wang, Rui & Kazemtabrizi, Behzad & Shi, Jianmai, 2019. "Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid," Energy, Elsevier, vol. 179(C), pages 1265-1278.
    5. Johannes Thema & Felix Suerkemper & Johan Couder & Nora Mzavanadze & Souran Chatterjee & Jens Teubler & Stefan Thomas & Diana Ürge-Vorsatz & Martin Bo Hansen & Stefan Bouzarovski & Jana Rasch & Sabine, 2019. "The Multiple Benefits of the 2030 EU Energy Efficiency Potential," Energies, MDPI, vol. 12(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Yang & Yeqin Wang & Weixing Zhang & Zhenghao Li & Rui Liang, 2022. "Design of Adaptive Fuzzy Sliding-Mode Control for High-Performance Islanded Inverter in Micro-Grid," Energies, MDPI, vol. 15(23), pages 1-25, December.
    2. Eros D. Escobar & Tatiana Manrique & Idi A. Isaac, 2022. "Campus Microgrid Data-Driven Model Identification and Secondary Voltage Control," Energies, MDPI, vol. 15(21), pages 1-19, October.
    3. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barilli, Riccardo & Ravasi, Martina & Zanellini, Fabio, 2022. "An efficient Energy Management System for long term planning and real time scheduling of flexible polygeneration systems," Renewable Energy, Elsevier, vol. 200(C), pages 1180-1201.
    4. Juan Moreno-Castro & Victor Samuel Ocaña Guevara & Lesyani Teresa León Viltre & Yandi Gallego Landera & Oscar Cuaresma Zevallos & Miguel Aybar-Mejía, 2023. "Microgrid Management Strategies for Economic Dispatch of Electricity Using Model Predictive Control Techniques: A Review," Energies, MDPI, vol. 16(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosini, A. & Procopio, R. & Bonfiglio, A. & Incremona, G.P. & Ferrara, A., 2022. "A Decentralized Higher Order Sliding Mode Control for Islanded Photovoltaic-Storage Systems," Energy, Elsevier, vol. 255(C).
    2. Alessandro Labella & Filip Filipovic & Milutin Petronijevic & Andrea Bonfiglio & Renato Procopio, 2020. "An MPC Approach for Grid-Forming Inverters: Theory and Experiment," Energies, MDPI, vol. 13(9), pages 1-17, May.
    3. Haifeng Liang & Yue Dong & Yuxi Huang & Can Zheng & Peng Li, 2018. "Modeling of Multiple Master–Slave Control under Island Microgrid and Stability Analysis Based on Control Parameter Configuration," Energies, MDPI, vol. 11(9), pages 1-18, August.
    4. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    5. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    6. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    7. Josimar Reyes-Campos & Giner Alor-Hernández & Isaac Machorro-Cano & José Oscar Olmedo-Aguirre & José Luis Sánchez-Cervantes & Lisbeth Rodríguez-Mazahua, 2021. "Discovery of Resident Behavior Patterns Using Machine Learning Techniques and IoT Paradigm," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    8. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    9. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    10. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    11. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    12. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    13. Hare, James & Shi, Xiaofang & Gupta, Shalabh & Bazzi, Ali, 2016. "Fault diagnostics in smart micro-grids: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1114-1124.
    14. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    15. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    16. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).
    17. Dubravko Žigman & Tomislav Tomiša & Krešimir Osman, 2023. "Methodology Presentation for the Configuration Optimization of Hybrid Electrical Energy Systems," Energies, MDPI, vol. 16(5), pages 1-25, February.
    18. Chaduvula, Hemanth & Das, Debapriya, 2023. "Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization," Energy, Elsevier, vol. 282(C).
    19. Reuter, Matthias & Patel, Martin K. & Eichhammer, Wolfgang & Lapillonne, Bruno & Pollier, Karine, 2020. "A comprehensive indicator set for measuring multiple benefits of energy efficiency," Energy Policy, Elsevier, vol. 139(C).
    20. Maes, Tom & Van Eetvelde, Greet & De Ras, Evelien & Block, Chantal & Pisman, Ann & Verhofstede, Bjorn & Vandendriessche, Frederik & Vandevelde, Lieven, 2011. "Energy management on industrial parks in Flanders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1988-2005, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5077-:d:860923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.