IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001839.html
   My bibliography  Save this article

Comparison of traditional with low temperature district heating systems based on organic Rankine cycle

Author

Listed:
  • Mikielewicz, Jarosław
  • Ochrymiuk, Tomasz
  • Cenian, Adam

Abstract

This paper compares a traditional district heating (DH) system with a low temperature DH system based on a combined heat and power (CHP) system using Organic Rankine Cycle (ORC). Both systems supply the same amount of heat, but it is shown that the system based on CHP using ORC is more effective and uses less fuel. This in turn results in less carbon dioxide emissions. The most advantageous configuration improving the real efficiency of the ultra-low temperature heating system seems to be a system combining a central heat pump and a station based on modern ORC technology which also provides an independent (off grid) electricity supply.

Suggested Citation

  • Mikielewicz, Jarosław & Ochrymiuk, Tomasz & Cenian, Adam, 2022. "Comparison of traditional with low temperature district heating systems based on organic Rankine cycle," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001839
    DOI: 10.1016/j.energy.2022.123280
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongwei & Svendsen, Svend, 2012. "Energy and exergy analysis of low temperature district heating network," Energy, Elsevier, vol. 45(1), pages 237-246.
    2. Zhang, Tao & Ma, Junhua & Zhou, Yanglin & Wang, Yongzhen & Chen, Qifang & Li, Xiaoping & Liu, Liuchen, 2021. "Thermo-economic analysis and optimization of ICE-ORC systems based on a splitter regulation," Energy, Elsevier, vol. 226(C).
    3. Wen Zhang & Enhua Wang & Fanxiao Meng & Fujun Zhang & Changlu Zhao, 2020. "Closed-Loop PI Control of an Organic Rankine Cycle for Engine Exhaust Heat Recovery," Energies, MDPI, vol. 13(15), pages 1-20, July.
    4. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
    5. Uris, María & Linares, José Ignacio & Arenas, Eva, 2017. "Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain," Energy, Elsevier, vol. 133(C), pages 969-985.
    6. Bianchini, Augusto & Guzzini, Alessandro & Pellegrini, Marco & Saccani, Cesare, 2017. "Photovoltaic/thermal (PV/T) solar system: Experimental measurements, performance analysis and economic assessment," Renewable Energy, Elsevier, vol. 111(C), pages 543-555.
    7. Bianchini, Augusto & Guzzini, Alessandro & Pellegrini, Marco & Saccani, Cesare, 2019. "Performance assessment of a solar parabolic dish for domestic use based on experimental measurements," Renewable Energy, Elsevier, vol. 133(C), pages 382-392.
    8. Marty, Fabien & Serra, Sylvain & Sochard, Sabine & Reneaume, Jean-Michel, 2018. "Simultaneous optimization of the district heating network topology and the Organic Rankine Cycle sizing of a geothermal plant," Energy, Elsevier, vol. 159(C), pages 1060-1074.
    9. Kilkis, Birol, 2021. "An exergy-based minimum carbon footprint model for optimum equipment oversizing and temperature peaking in low-temperature district heating systems," Energy, Elsevier, vol. 236(C).
    10. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.
    11. Chen, Yuzhu & Hua, Huilian & Xu, Jinzhao & Yun, Zhonghua & Wang, Jun & Lund, Peter D., 2022. "Techno-economic cost assessment of a combined cooling heating and power system coupled to organic Rankine cycle with life cycle method," Energy, Elsevier, vol. 239(PA).
    12. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    13. Chen, Yuzhu & Xu, Jinzhao & Zhao, Dandan & Wang, Jun & Lund, Peter D., 2021. "Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump," Energy, Elsevier, vol. 230(C).
    14. Du, Yang & Liu, Tingting & Wang, Yaxiong & Chen, Kang & Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2021. "Transient behavior investigation of a regenerative dual-evaporator organic Rankine cycle with different forms of disturbances: Towards coordinated feedback control realization," Energy, Elsevier, vol. 235(C).
    15. Abubakr Ayub & Costante M. Invernizzi & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2020. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles," Energies, MDPI, vol. 13(15), pages 1-18, August.
    16. Ghorbani, Sh. & Khoshgoftar-Manesh, M.H. & Nourpour, M. & Blanco-Marigorta, A.M., 2020. "Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system," Energy, Elsevier, vol. 206(C).
    17. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    18. Bianchini, Augusto & Gambuti, Michele & Pellegrini, Marco & Saccani, Cesare, 2016. "Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements," Renewable Energy, Elsevier, vol. 85(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Topal, Halil İbrahim & Tol, Hakan İbrahim & Kopaç, Mehmet & Arabkoohsar, Ahmad, 2022. "Energy, exergy and economic investigation of operating temperature impacts on district heating systems: Transition from high to low-temperature networks," Energy, Elsevier, vol. 251(C).
    2. Mikielewicz, Jarosław & Mikielewicz, Dariusz, 2023. "Comparison of traditional district heating with low temperature district heating systems featuring organic Rankine cycle and heat pump," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikielewicz, Jarosław & Mikielewicz, Dariusz, 2023. "Comparison of traditional district heating with low temperature district heating systems featuring organic Rankine cycle and heat pump," Energy, Elsevier, vol. 281(C).
    2. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    3. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
    5. Topal, Halil İbrahim & Tol, Hakan İbrahim & Kopaç, Mehmet & Arabkoohsar, Ahmad, 2022. "Energy, exergy and economic investigation of operating temperature impacts on district heating systems: Transition from high to low-temperature networks," Energy, Elsevier, vol. 251(C).
    6. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    7. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    8. Cai, Hanmin & You, Shi & Wu, Jianzhong, 2020. "Agent-based distributed demand response in district heating systems," Applied Energy, Elsevier, vol. 262(C).
    9. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    10. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    11. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    12. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    13. Mikielewicz, Dariusz & Mikielewicz, Jarosław, 2022. "Analysis of Organic Rankine Cycle efficiency and vapor generator heat transfer surface in function of the reduced pressure," Energy, Elsevier, vol. 261(PB).
    14. Gadd, Henrik & Werner, Sven, 2014. "Achieving low return temperatures from district heating substations," Applied Energy, Elsevier, vol. 136(C), pages 59-67.
    15. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    16. Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
    17. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    18. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    19. Hering, Dominik & Cansev, Mehmet Ege & Tamassia, Eugenio & Xhonneux, André & Müller, Dirk, 2021. "Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming," Energy, Elsevier, vol. 224(C).
    20. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.