IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs036054422102524x.html
   My bibliography  Save this article

Self-controlling resource management model for electric vehicle fast charging stations with priority service

Author

Listed:
  • Kakillioglu, Emre Anıl
  • Yıldız Aktaş, Melike
  • Fescioglu-Unver, Nilgun

Abstract

Along with the increasing number of electric vehicles (EVs) on the roads, the demand for public fast-charging stations is growing. Long charging times for EVs may lead to congestion in charging stations, queues, and increased waiting times. Different vehicle owners have different sensitivities to waiting time and price. User prioritization is an effective solution for satisfying users with different requests. In this study, we develop a self-controlling resource management model for EV fast-charging stations that provide prioritized service. The model aims to control the delay times of express and normal vehicle classes such that the ratio of their average delay times tracks a target relative delay rate in real time. Each station can determine and change its target relative delay rate according to its policy. The model manages the allocation of resources to user classes in real time through a control mechanism to track the target. The control mechanism uses a simulation model to predict the outcomes of its actions. Numerical studies demonstrate that the model successfully achieves the relative delay target in both steady state and real time under different conditions. The model is applicable to most systems with a dynamically varying workload and a priority-based service goal.

Suggested Citation

  • Kakillioglu, Emre Anıl & Yıldız Aktaş, Melike & Fescioglu-Unver, Nilgun, 2022. "Self-controlling resource management model for electric vehicle fast charging stations with priority service," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s036054422102524x
    DOI: 10.1016/j.energy.2021.122276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102524X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bryden, Thomas S. & Hilton, George & Cruden, Andrew & Holton, Tim, 2018. "Electric vehicle fast charging station usage and power requirements," Energy, Elsevier, vol. 152(C), pages 322-332.
    2. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    3. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    4. Sun, Bo & Sun, Xu & Tsang, Danny H.K. & Whitt, Ward, 2019. "Optimal battery purchasing and charging strategy at electric vehicle battery swap stations," European Journal of Operational Research, Elsevier, vol. 279(2), pages 524-539.
    5. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    7. Su Su & Hao Li & David Wenzhong Gao, 2017. "Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits," Energies, MDPI, vol. 10(7), pages 1-15, July.
    8. Zhang, Xu & Peng, Linyu & Cao, Yue & Liu, Shuohan & Zhou, Huan & Huang, Keli, 2020. "Towards holistic charging management for urban electric taxi via a hybrid deployment of battery charging and swap stations," Renewable Energy, Elsevier, vol. 155(C), pages 703-716.
    9. Poyrazoglu, Gokturk & Coban, Elvin, 2021. "A stochastic value estimation tool for electric vehicle charging points," Energy, Elsevier, vol. 227(C).
    10. Chunlin Guo & Jingjing Yang & Lin Yang, 2018. "Planning of Electric Vehicle Charging Infrastructure for Urban Areas with Tight Land Supply," Energies, MDPI, vol. 11(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazari-Heris, Morteza & Loni, Abdolah & Asadi, Somayeh & Mohammadi-ivatloo, Behnam, 2022. "Toward social equity access and mobile charging stations for electric vehicles: A case study in Los Angeles," Applied Energy, Elsevier, vol. 311(C).
    2. Luo, Lizi & He, Pinquan & Gu, Wei & Sheng, Wanxing & Liu, Keyan & Bai, Muke, 2022. "Temporal-spatial scheduling of electric vehicles in AC/DC distribution networks," Energy, Elsevier, vol. 255(C).
    3. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Cong Zhang & Qun Gao & Ke Peng & Yan Jiang, 2023. "An EV Charging Guidance Strategy Based on the Hierarchical Comprehensive Evaluation Method," Energies, MDPI, vol. 16(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    2. Roel M. Post & Paul Buijs & Michiel A. J. uit het Broek & Jose A. Lopez Alvarez & Nick B. Szirbik & Iris F. A. Vis, 2018. "A solution approach for deriving alternative fuel station infrastructure requirements," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 592-607, September.
    3. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    4. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    5. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    6. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    7. Alberto Ceselli & Ángel Felipe & M. Teresa Ortuño & Giovanni Righini & Gregorio Tirado, 2021. "A Branch-and-Cut-and-Price Algorithm for the Electric Vehicle Routing Problem with Multiple Technologies," SN Operations Research Forum, Springer, vol. 2(1), pages 1-33, March.
    8. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    9. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    10. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    11. Rui Chen & Xinglu Liu & Lixin Miao & Peng Yang, 2020. "Electric Vehicle Tour Planning Considering Range Anxiety," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    12. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    13. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    14. Zu-Jun Ma & Fei Yang & Ying Dai & Zuo-Jun Max Shen, 2021. "The Migratory Beekeeping Routing Problem: Model and an Exact Algorithm," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 319-335, January.
    15. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    16. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "The electric on-demand bus routing problem with partial charging and nonlinear functions," Working Papers 2022005, University of Antwerp, Faculty of Business and Economics.
    17. Cui, Shaohua & Ma, Xiaolei & Zhang, Mingheng & Yu, Bin & Yao, Baozhen, 2022. "The parallel mobile charging service for free-floating shared electric vehicle clusters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    18. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    19. Long He & Guangrui Ma & Wei Qi & Xin Wang, 2021. "Charging an Electric Vehicle-Sharing Fleet," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 471-487, March.
    20. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s036054422102524x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.