IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i13p2092-d1687532.html
   My bibliography  Save this article

Optimizing PHEV Routing with Hybrid Mode and Partial Charging via Labeling-Based Methods

Author

Listed:
  • Zhenhua Chen

    (College of Transport & Communications, Shanghai Maritime University, Shanghai 201306, China)

  • Qiong Chen

    (Navigation College, Jimei University, Xiamen 361021, China)

  • Yiying Chao

    (Zhoushan Campus, Zhejiang University, Zhoushan 316021, China)

  • Cheng Xue

    (Zhoushan Campus, Zhejiang University, Zhoushan 316021, China)

Abstract

This study investigates a variant of the shortest path problem (SPP) tailored for plug-in hybrid electric vehicles (PHEVs), incorporating two practical features: hybrid energy mode switching and partial charging. A novel modeling framework is proposed that enables PHEVs to dynamically switch between electricity and fuel along each edge and to recharge partially at charging stations. Unlike most prior studies that rely on more complex modeling approaches, this paper introduces a compact mixed-integer linear programming (MILP) model that remains directly solvable using commercial solvers such as Gurobi. To address large-scale networks, a customized labeling algorithm is developed for an efficient solution. Numerical results on benchmark networks show that the hybrid mode and partial charging can reduce total cost by up to 29.76% and significantly affect route choices. The proposed algorithm demonstrates strong scalability, solving instances with up to 33,000 nodes while maintaining near-optimal performance, with less than 5% deviation in smaller cases.

Suggested Citation

  • Zhenhua Chen & Qiong Chen & Yiying Chao & Cheng Xue, 2025. "Optimizing PHEV Routing with Hybrid Mode and Partial Charging via Labeling-Based Methods," Mathematics, MDPI, vol. 13(13), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2092-:d:1687532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/13/2092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/13/2092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    2. Keisuke Murakami, 2018. "Formulation and algorithms for route planning problem of plug-in hybrid electric vehicles," Operational Research, Springer, vol. 18(2), pages 497-519, July.
    3. Murakami, Keisuke, 2017. "A new model and approach to electric and diesel-powered vehicle routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 23-37.
    4. Denissa Sari Darmawi Purba & Eleftheria Kontou & Chrysafis Vogiatzis, 2021. "Evacuation Route Planning for Alternative Fuel Vehicles," Papers 2109.01578, arXiv.org, revised May 2022.
    5. Mark M. Nejad & Lena Mashayekhy & Daniel Grosu & Ratna Babu Chinnam, 2017. "Optimal Routing for Plug-In Hybrid Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1304-1325, November.
    6. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    7. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    8. Haihong Bian & Quance Ren & Zhengyang Guo & Chengang Zhou & Zhiyuan Zhang & Ximeng Wang, 2024. "Predictive Model for EV Charging Load Incorporating Multimodal Travel Behavior and Microscopic Traffic Simulation," Energies, MDPI, vol. 17(11), pages 1-23, May.
    9. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    11. Himmich, Ilyas & El Hallaoui, Issmail & Soumis, François, 2024. "A multiphase dynamic programming algorithm for the shortest path problem with resource constraints," European Journal of Operational Research, Elsevier, vol. 315(2), pages 470-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    2. Zhenhua Chen & Qiong Chen & Cheng Xue & Yiying Chao, 2025. "PHEV Routing with Hybrid Energy and Partial Charging: Solved via Dantzig–Wolfe Decomposition," Mathematics, MDPI, vol. 13(14), pages 1-29, July.
    3. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    4. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    5. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    6. Meyer, Anne & Gschwind, Timo & Amberg, Boris & Colling, Dominik, 2025. "Exact algorithms for routing electric autonomous mobile robots in intralogistics," European Journal of Operational Research, Elsevier, vol. 323(3), pages 830-851.
    7. Hiermann, Gerhard & Hartl, Richard F. & Puchinger, Jakob & Vidal, Thibaut, 2019. "Routing a mix of conventional, plug-in hybrid, and electric vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 235-248.
    8. Amine Masmoudi, M. & Coelho, Leandro C. & Demir, Emrah, 2022. "Plug-in hybrid electric refuse vehicle routing problem for waste collection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    9. Guy Desaulniers & Timo Gschwind & Stefan Irnich, 2020. "Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models," Transportation Science, INFORMS, vol. 54(5), pages 1526-5447, September.
    10. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    11. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    12. Schmidt, Jeanette & Tilk, Christian & Irnich, Stefan, 2024. "Using public transport in a 2-echelon last-mile delivery network," European Journal of Operational Research, Elsevier, vol. 317(3), pages 827-840.
    13. Christian Tilk & Ann-Kathrin Rothenbächer & Timo Gschwind & Stefan Irnich, 2016. "Asymmetry Helps: Dynamic Half-Way Points for Solving Shortest Path Problems with Resource Constraints Faster," Working Papers 1615, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    14. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    15. Stefan Faldum & Sarah Machate & Timo Gschwind & Stefan Irnich, 2024. "Partial dominance in branch-price-and-cut algorithms for vehicle routing and scheduling problems with a single-segment tradeoff," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1063-1097, December.
    16. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    17. Jiang, Yupeng & Hu, Wei & Gu, Wenjuan & Yu, Yongguang & Xu, Meng, 2025. "A multi-mode hybrid electric vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
    18. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    19. Lera-Romero, Gonzalo & Miranda Bront, Juan José & Soulignac, Francisco J., 2024. "A branch-cut-and-price algorithm for the time-dependent electric vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 312(3), pages 978-995.
    20. Stefan Faldum & Timo Gschwind & Stefan Irnich, 2023. "Subset-Row Inequalities and Unreachability in Path-based Formulations for Routing and Scheduling Problems," Working Papers 2310, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2092-:d:1687532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.