IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022556.html
   My bibliography  Save this article

Experimental study of the dynamic and transient characteristics of sub-health fuel cell multi-stack systems without DC/DC

Author

Listed:
  • Duan, Hao
  • Zhang, Caizhi
  • Wang, Gucheng
  • Chen, Yu'an
  • Liu, Zhixiang
  • Xie, Xianshu
  • Shuai, Qi

Abstract

Multi-stack fuel cell systems without DC/DC converters can greatly reduce cost, efficiency loss, and particularly appropriate for weight-constrained applications. In this study, two sub-health fuel cell stacks with poor consistency were applied to study the dynamic and transient characteristics, power adaptive allocation and output stability in no-DC/DC series and parallel architectures. The results show voltage difference, voltage overshoot rate and undershoot rate in the series system are positively correlated with current loads, and the poor performance stack is more serious. In the parallel structure, the output currents are unequal and the current difference goes up with the increase of loads. Furthermore, extremely current overshoot and backflow phenomenon were observed at the moment of one fuel cell suddenly turned on. Unexpectedly, the transient backflow current flows through the same point when it rebounds and the poor consistency fuel cell stacks have similar transient current. The terrific result is the fuel cells run steadily and less than 50 ms transient process in both structures. The results not only indicate the proposed architectures are feasible and provide a foundation research for no-DC/DC multi-stack systems management, but also lay a novel reference for the improvement and verification of the fuel cell transient mathematical model.

Suggested Citation

  • Duan, Hao & Zhang, Caizhi & Wang, Gucheng & Chen, Yu'an & Liu, Zhixiang & Xie, Xianshu & Shuai, Qi, 2022. "Experimental study of the dynamic and transient characteristics of sub-health fuel cell multi-stack systems without DC/DC," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022556
    DOI: 10.1016/j.energy.2021.122007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalla Longa, Francesco & Nogueira, Larissa P. & Limberger, Jon & Wees, Jan-Diederik van & van der Zwaan, Bob, 2020. "Scenarios for geothermal energy deployment in Europe," Energy, Elsevier, vol. 206(C).
    2. Tang, Yong & Yuan, Wei & Pan, Minqiang & Li, Zongtao & Chen, Guoqing & Li, Yong, 2010. "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, Elsevier, vol. 87(4), pages 1410-1417, April.
    3. Milad Bahrami & Jean-Philippe Martin & Gaël Maranzana & Serge Pierfederici & Mathieu Weber & Farid Meibody-Tabar & Majid Zandi, 2020. "Multi-Stack Lifetime Improvement through Adapted Power Electronic Architecture in a Fuel Cell Hybrid System," Mathematics, MDPI, vol. 8(5), pages 1-28, May.
    4. Zhang, Caizhi & Liu, Zhitao & Zhou, Weijiang & Chan, Siew Hwa & Wang, Youyi, 2015. "Dynamic performance of a high-temperature PEM fuel cell – An experimental study," Energy, Elsevier, vol. 90(P2), pages 1949-1955.
    5. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    6. Hou, Yongping & Yang, Zhihua & Fang, Xue, 2011. "An experimental study on the dynamic process of PEM fuel cell stack voltage," Renewable Energy, Elsevier, vol. 36(1), pages 325-329.
    7. Di Trolio, P. & Di Giorgio, P. & Genovese, M. & Frasci, E. & Minutillo, M., 2020. "A hybrid power-unit based on a passive fuel cell/battery system for lightweight vehicles," Applied Energy, Elsevier, vol. 279(C).
    8. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    9. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    10. Sun, Zhendong & Wang, Yujie & Chen, Zonghai & Li, Xiyun, 2020. "Min-max game based energy management strategy for fuel cell/supercapacitor hybrid electric vehicles," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Kai & Chen, Ben & Zhou, Haoran & Shen, Jun & Shen, Zuguo & Tu, Zhengkai, 2022. "Investigation on degradation mechanism of hydrogen–oxygen proton exchange membrane fuel cell under current cyclic loading," Energy, Elsevier, vol. 242(C).
    2. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    3. Liu, Xiaobo & Wu, Xiaohua, 2023. "A two-stage bidirectional DC-DC converter system and its control strategy," Energy, Elsevier, vol. 266(C).
    4. Zhou, Su & Zhang, Gang & Fan, Lei & Gao, Jianhua & Pei, Fenglai, 2022. "Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 308(C).
    5. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    6. Zhou, Su & Xie, Zhengchun & Chen, Chunguang & Zhang, Gang & Guo, Junhua, 2022. "Design and energy consumption research of an integrated air supply device for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Yongping & Shen, Caoyuan & Yang, Zhihua & He, Yuntang, 2012. "A dynamic voltage model of a fuel cell stack considering the effects of hydrogen purge operation," Renewable Energy, Elsevier, vol. 44(C), pages 246-251.
    2. Lombardi, Simone & Di Ilio, Giovanni & Tribioli, Laura & Jannelli, Elio, 2023. "Optimal design of an adaptive energy management strategy for a fuel cell tractor operating in ports," Applied Energy, Elsevier, vol. 352(C).
    3. Mehroze Iqbal & Amel Benmouna & Frederic Claude & Mohamed Becherif, 2023. "Efficient and Reliable Power-Conditioning Stage for Fuel Cell-Based High-Power Applications," Energies, MDPI, vol. 16(13), pages 1-15, June.
    4. Zhang, Caizhi & Liu, Zhitao & Zhang, Xiongwen & Chan, Siew Hwa & Wang, Youyi, 2016. "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process," Energy, Elsevier, vol. 95(C), pages 425-432.
    5. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    6. Molina, S. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions," Applied Energy, Elsevier, vol. 285(C).
    7. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Andújar, J.M. & Segura, F. & Isorna, F. & Calderón, A.J., 2018. "Comprehensive diagnosis methodology for faults detection and identification, and performance improvement of Air-Cooled Polymer Electrolyte Fuel Cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 193-207.
    9. Zhang, Caizhi & Liu, Zhitao & Zhou, Weijiang & Chan, Siew Hwa & Wang, Youyi, 2015. "Dynamic performance of a high-temperature PEM fuel cell – An experimental study," Energy, Elsevier, vol. 90(P2), pages 1949-1955.
    10. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    11. van der Zwaan, Bob & Lamboo, Sam & Dalla Longa, Francesco, 2021. "Timmermans’ dream: An electricity and hydrogen partnership between Europe and North Africa," Energy Policy, Elsevier, vol. 159(C).
    12. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    13. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    14. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    15. Hou, Yongping & Shen, Caoyuan & Hao, Dong & Liu, Yanan & Wang, Hong, 2014. "A dynamic model for hydrogen consumption of fuel cell stacks considering the effects of hydrogen purge operation," Renewable Energy, Elsevier, vol. 62(C), pages 672-678.
    16. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    17. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    18. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    19. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    20. Luo, Lizhong & Jian, Qifei & Huang, Bi & Huang, Zipeng & Zhao, Jing & Cao, Songyang, 2019. "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 143(C), pages 1067-1078.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.