IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics036054422100832x.html
   My bibliography  Save this article

Pressure drop in two phase flow of condensing air-steam mixture inside PHE channels formed by plates with corrugations of different geometries

Author

Listed:
  • Kapustenko, Petro
  • Klemeš, Jiří Jaromír
  • Arsenyeva, Olga
  • Tovazhnyanskyy, Leonid
  • Zorenko, Viktor

Abstract

The pressure drop in the two-phase condensing flow of air-steam mixture inside channels of plate heat exchanger (PHE) with different geometries of corrugations is studied based on experiments and one-dimensional mathematical modelling. The experiments were made with five samples of the PHE channel. In three of them plates with corrugations inclination angles 30, 45 and 60° at the same height of corrugations 5 mm. The other two plates corrugations height was 7.5 and 10 mm at the same pitch to height ratio and inclination angle of 60°. The correlation of pressure drop data for all experimental samples by average process parameters is not able to give acceptable accuracy. The correlation for local pressure gradients in two-phase condensing flow is identified using a developed one-dimensional mathematical model. The model of separated flows of phases is employed for channel zones close to air-steam mixture entrance. Further on channel length with an increase of liquid phase quantities, its combination with the dispersed annular flow structure model is used. The proposed equations can be included in the mathematical model when designing PHE and optimising the geometrical form of corrugations on its plates for steam condensation processes from an air-steam mixture.

Suggested Citation

  • Kapustenko, Petro & Klemeš, Jiří Jaromír & Arsenyeva, Olga & Tovazhnyanskyy, Leonid & Zorenko, Viktor, 2021. "Pressure drop in two phase flow of condensing air-steam mixture inside PHE channels formed by plates with corrugations of different geometries," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s036054422100832x
    DOI: 10.1016/j.energy.2021.120583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100832X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapustenko, Petro O. & Klemeš, Jiří Jaromír & Arsenyeva, Olga P. & Kusakov, Sergey K. & Tovazhnyanskyy, Leonid L., 2020. "The influence of plate corrugations geometry scale factor on performance of plate heat exchanger as condenser of vapour from its mixture with noncondensing gas," Energy, Elsevier, vol. 201(C).
    2. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Huang, Hongyan & Yan, Peigang & Lin, Chih-Hung, 2019. "Effect of flow losses in heat exchangers on the performance of organic Rankine cycle," Energy, Elsevier, vol. 172(C), pages 391-400.
    3. Perevertaylenko, Olexander Yu. & Gariev, Andriy O. & Damartzis, Theodoros & Tovazhnyanskyy, Leonid L. & Kapustenko, Petro O. & Arsenyeva, Olga P., 2015. "Searches of cost effective ways for amine absorption unit design in CO2 post-combustion capture process," Energy, Elsevier, vol. 90(P1), pages 105-112.
    4. Arsenyeva, Olga & Piper, Mark & Zibart, Alexander & Olenberg, Alexander & Kenig, Eugeny Y., 2019. "Investigation of heat transfer and hydraulic resistance in small-scale pillow-plate heat exchangers," Energy, Elsevier, vol. 181(C), pages 1213-1224.
    5. Zhang, Yanfeng & Jiang, Chen & Shou, Binan & Zhou, Wenxue & Zhang, Zhifeng & Wang, Shuang & Bai, Bofeng, 2018. "A quantitative energy efficiency evaluation and grading of plate heat exchangers," Energy, Elsevier, vol. 142(C), pages 228-233.
    6. Nikolaisen, Monika & Andresen, Trond, 2021. "System impact of heat exchanger pressure loss in ORCs for smelter off-gas waste heat recovery," Energy, Elsevier, vol. 215(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao, Ning & Azman, Amirah Nabilah & Ding, Guangxin & Jin, Yubo & Kang, Can & Kim, Hyoung-Bum, 2022. "Black-box real-time identification of sub-regime of gas-liquid flow using Ultrasound Doppler Velocimetry with deep learning," Energy, Elsevier, vol. 239(PD).
    2. Ma, Huimin & Xu, Ying & Huang, Hongbo & Yuan, Chao & Wang, Jinghan & Yang, Yiguang & Wang, Da, 2024. "Intelligent predictions for flow pattern and phase fraction of a horizontal gas-liquid flow," Energy, Elsevier, vol. 303(C).
    3. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Petro Kapustenko & Jiří Jaromír Klemeš & Olga Arsenyeva & Leonid Tovazhnyanskyy, 2023. "PHE (Plate Heat Exchanger) for Condensing Duties: Recent Advances and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-18, January.
    5. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Tovazhnyanskyy, Leonid & Klochok, Eugeny & Kapustenko, Petro, 2023. "Estimating parameters of plate heat exchanger for condensation of steam from mixture with air as a component of heat exchanger network," Energy, Elsevier, vol. 283(C).
    6. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Klochock, Eugeny & Kapustenko, Petro, 2023. "The effect of plate size and corrugation pattern on plate heat exchanger performance in specific conditions of steam-air mixture condensation," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Kapustenko, Petro & Fedorenko, Olena & Kusakov, Sergiy & Kobylnik, Dmytro, 2021. "Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process," Energy, Elsevier, vol. 233(C).
    2. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Klochock, Eugeny & Kapustenko, Petro, 2023. "The effect of plate size and corrugation pattern on plate heat exchanger performance in specific conditions of steam-air mixture condensation," Energy, Elsevier, vol. 263(PC).
    3. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    4. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    5. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Tovazhnyanskyy, Leonid & Klochok, Eugeny & Kapustenko, Petro, 2023. "Estimating parameters of plate heat exchanger for condensation of steam from mixture with air as a component of heat exchanger network," Energy, Elsevier, vol. 283(C).
    6. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    7. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    8. Ping, Xu & Yao, Baofeng & Zhang, Hongguang & Yang, Fubin, 2021. "Thermodynamic analysis and high-dimensional evolutionary many-objective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery," Energy, Elsevier, vol. 236(C).
    9. Zhang, Yi-Fan & Li, Ming-Jia & Ren, Xiao & Duan, Xin-Yue & Wu, Chia-Jung & Xi, Huan & Feng, Yong-Qiang & Gong, Liang & Hung, Tzu-Chen, 2022. "Effect of heat source supplies on system behaviors of ORCs with different capacities: An experimental comparison between the 3 kW and 10 kW unit," Energy, Elsevier, vol. 254(PB).
    10. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    11. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    12. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    13. Leonid Tovazhnyanskyy & Jiří Jaromir Klemeš & Petro Kapustenko & Olga Arsenyeva & Olexandr Perevertaylenko & Pavlo Arsenyev, 2020. "Optimal Design of Welded Plate Heat Exchanger for Ammonia Synthesis Column: An Experimental Study with Mathematical Optimisation," Energies, MDPI, vol. 13(11), pages 1-18, June.
    14. Adriana Reyes-Lúa & Julian Straus & Vidar T. Skjervold & Goran Durakovic & Tom Ståle Nordtvedt, 2021. "A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
    15. Petro Kapustenko & Jiří Jaromír Klemeš & Olga Arsenyeva & Leonid Tovazhnyanskyy, 2023. "PHE (Plate Heat Exchanger) for Condensing Duties: Recent Advances and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-18, January.
    16. Luo, Junwei & Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Chen, Jianyong & Liang, Yingzong & Yang, Zhi & Chen, Ying, 2023. "Experimental and simulation investigation on the heat exchangers in an ORC under various heat source/sink conditions," Energy, Elsevier, vol. 264(C).
    17. Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
    18. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2019. "Experimental and Numerical Characterization of the Sliding Rotary Vane Expander Intake Pressure in Order to Develop a Novel Control-Diagnostic Procedure," Energies, MDPI, vol. 12(10), pages 1-17, May.
    19. Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
    20. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s036054422100832x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.