IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224038581.html
   My bibliography  Save this article

Improved assessment of energy efficiency for plate heat exchanger grading

Author

Listed:
  • Chen, Yilong
  • Zhou, Wenxue
  • Gao, Liping
  • Sun, Lili
  • Bai, Bofeng

Abstract

Quantitatively evaluating and grading the energy efficiency of heat exchangers is of pivotal for energy conservation and emission reduction in the industrial fields. This improved study is to modify our theory on the grading index of the Energy Efficiency Index (EEI) based on an extended database of plate heat exchangers (PHEs). Firstly, the basic requirements for energy efficiency evaluation of heat exchanger grading are discussed. Subsequently, the expression of the EEI is revised to accommodate heat exchangers with non-uniform structures, and the physical significance of the pressure gradient exponent n is investigated. By establishing a new database of 451 plate heat exchangers, a comparison with other evaluation methodologies rooted in the first and the second law methods validate our grading theory and its stability. The energy efficiency distribution of the PHEs in the database is then obtained, allowing for the grading and categorization of the PHEs. Notably, replacing lower-grade exchangers with high ones achieves a remarkable reduction of 55.2 % in pump power consumption. This improved grading method can serve as a classification standard for energy-saving policies, and thereby facilitate energy conservation and emission reduction in the heat exchanger industry.

Suggested Citation

  • Chen, Yilong & Zhou, Wenxue & Gao, Liping & Sun, Lili & Bai, Bofeng, 2024. "Improved assessment of energy efficiency for plate heat exchanger grading," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038581
    DOI: 10.1016/j.energy.2024.134080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wenterodt, Tammo & Redecker, Christoph & Herwig, Heinz, 2015. "Second law analysis for sustainable heat and energy transfer: The entropic potential concept," Applied Energy, Elsevier, vol. 139(C), pages 376-383.
    2. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    3. Keçebaş, Ali & Georgiev, Aleksandar G. & Karaca-Dolgun, Gülşah, 2024. "Exergy and exergoenvironmental analyses for characterizing heat transfer and pressure drop of any heat exchanger," Energy, Elsevier, vol. 290(C).
    4. Zhang, Yanfeng & Jiang, Chen & Shou, Binan & Zhou, Wenxue & Zhang, Zhifeng & Wang, Shuang & Bai, Bofeng, 2018. "A quantitative energy efficiency evaluation and grading of plate heat exchangers," Energy, Elsevier, vol. 142(C), pages 228-233.
    5. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yanfeng & Jiang, Chen & Shou, Binan & Zhou, Wenxue & Zhang, Zhifeng & Wang, Shuang & Bai, Bofeng, 2018. "A quantitative energy efficiency evaluation and grading of plate heat exchangers," Energy, Elsevier, vol. 142(C), pages 228-233.
    2. Keçebaş, Ali & Georgiev, Aleksandar G. & Karaca-Dolgun, Gülşah, 2024. "Exergy and exergoenvironmental analyses for characterizing heat transfer and pressure drop of any heat exchanger," Energy, Elsevier, vol. 290(C).
    3. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    4. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    5. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    6. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
    7. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Kapustenko, Petro & Fedorenko, Olena & Kusakov, Sergiy & Kobylnik, Dmytro, 2021. "Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process," Energy, Elsevier, vol. 233(C).
    8. Ting Yue & Ruyin Long & Junli Liu & Haiwen Liu & Hong Chen, 2019. "Empirical Study on Households’ Energy-Conservation Behavior of Jiangsu Province in China: The Role of Policies and Behavior Results," IJERPH, MDPI, vol. 16(6), pages 1-16, March.
    9. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    10. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
    11. Chater, Hamza & Bakhattar, Ilias & Asbik, Mohamed & Koukouch, Abdelghani & Mouaky, Ammar & Ouachakradi, Zakariae, 2024. "Hybrid solar hydrothermal carbonization by integrating photovoltaic and parabolic trough technologies: Energy and exergy analyses, innovative designs, and mathematical Modelling," Energy, Elsevier, vol. 305(C).
    12. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    13. Kapustenko, Petro & Klemeš, Jiří Jaromír & Arsenyeva, Olga & Tovazhnyanskyy, Leonid & Zorenko, Viktor, 2021. "Pressure drop in two phase flow of condensing air-steam mixture inside PHE channels formed by plates with corrugations of different geometries," Energy, Elsevier, vol. 228(C).
    14. El-Behery, Samy M. & Hussien, A.A. & Kotb, H. & El-Shafie, Mostafa, 2017. "Performance evaluation of industrial glass furnace regenerator," Energy, Elsevier, vol. 119(C), pages 1119-1130.
    15. Li, Nianqi & Chen, Jian & Cheng, Tao & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Wang, Qiuwang & Yang, Weisheng & Liu, Xia & Zeng, Min, 2020. "Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation," Energy, Elsevier, vol. 202(C).
    16. Porse, Erik & Derenski, Joshua & Gustafson, Hannah & Elizabeth, Zoe & Pincetl, Stephanie, 2016. "Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity," Energy Policy, Elsevier, vol. 96(C), pages 179-192.
    17. Zhu, Lin & Wang, Yong & Shang, Peipei & Qi, Lin & Yang, Guangchun & Wang, Ying, 2019. "Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: Based on an improved nonradial multidirectional efficiency analysis," Energy Policy, Elsevier, vol. 133(C).
    18. Quaglione, Davide & Cassetta, Ernesto & Crociata, Alessandro & Sarra, Alessandro, 2017. "Exploring additional determinants of energy-saving behaviour: The influence of individuals' participation in cultural activities," Energy Policy, Elsevier, vol. 108(C), pages 503-511.
    19. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    20. Yao, Jin & Zhang, Zijin & Saari, Jussi & Wang, Jin & Čuček, Lidija & Zheng, Dan, 2024. "Structure optimization of intercooler bionic fins based on artificial neural network and genetic algorithms," Energy, Elsevier, vol. 307(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.