IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221002693.html
   My bibliography  Save this article

Experimental study and numerical validation on the effect of inclination angle to the thermal performance of solar heat pipe photovoltaic/thermal system

Author

Listed:
  • Zhang, Tao
  • Zheng, Wenjie
  • Wang, Liuya
  • Yan, Zhiwei
  • Hu, Mingke

Abstract

Effect of inclination angle to the thermal performance of a heat pipe photovoltaic/thermal system (HP-PV/T) system was rarely reported. In the present study, a HP-PV/T system was firstly constructed in an Enthalpy Difference Laboratory, where inclination angle was experimentally managed as the only variable. Meanwhile, a comprehensive numerical model for the HP-PV/T system was developed to validate the experiments. Particularly, a 3D model for the inclined heat pipe was also firstly involved. The simulation results show that liquid film thickness within the condenser or the evaporator stabilizes at a constant value at inclining condition. The relative filmwise thermal resistance of the condenser decreases first and then increases with inclination angle; while the evaporator shows an opposite trend to the condenser. The overall thermal resistance of solar heat pipe is mainly determined by the evaporator while the evaporator is mainly determined by the effective height of the liquid pool. The experimental and simulation results both indicate that the optimum inclination angle is 40°. The proposed model agrees well with the experimental results at big inclination angles (≥20°), it is practicable to reveal the influence of inclination angle to the thermal performance of a HP-PV/T system.

Suggested Citation

  • Zhang, Tao & Zheng, Wenjie & Wang, Liuya & Yan, Zhiwei & Hu, Mingke, 2021. "Experimental study and numerical validation on the effect of inclination angle to the thermal performance of solar heat pipe photovoltaic/thermal system," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002693
    DOI: 10.1016/j.energy.2021.120020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hussein, H.M.S. & Mohamad, M.A. & El-Asfouri, A.S., 2001. "Theoretical analysis of laminar-film condensation heat transfer inside inclined wickless heat pipes flat-plate solar collector," Renewable Energy, Elsevier, vol. 23(3), pages 525-535.
    2. Wang, Yunyun & Pei, Gang & Zhang, Longcan, 2014. "Effects of frame shadow on the PV character of a photovoltaic/thermal system," Applied Energy, Elsevier, vol. 130(C), pages 326-332.
    3. Brough, Daniel & Mezquita, Ana & Ferrer, Salvador & Segarra, Carmen & Chauhan, Amisha & Almahmoud, Sulaiman & Khordehgah, Navid & Ahmad, Lujean & Middleton, David & Sewell, H. Isaac & Jouhara, Hussam, 2020. "An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger," Energy, Elsevier, vol. 208(C).
    4. Du, Bin & Hu, Eric & Kolhe, Mohan, 2013. "An experimental platform for heat pipe solar collector testing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 119-125.
    5. Liu, Wenjie & Chow, Tin-Tai, 2020. "Experimental and numerical analysis of solar-absorbing metallic facade panel with embedded heat-pipe-array," Applied Energy, Elsevier, vol. 265(C).
    6. Zhang, Tao & Yan, Zhiwei & Pei, Gang & Zhu, Qunzhi & Ji, Jie, 2019. "Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 143(C), pages 233-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xue & Shao, Junyan & Jiang, Tao & Chen, Houhe & Zhou, Yue & Zhang, Rufeng & Jia, Hongjie & Wu, Jianzhong, 2024. "A hierarchical test benchmark of integrated energy system in Northeast China," Applied Energy, Elsevier, vol. 374(C).
    2. Li, Zhaomeng & Ji, Jie & Li, Jing & Zhao, Xudong & Cui, Yu & Song, Zhiying & Wen, Xin & Yao, TingTing, 2022. "Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale applicat," Renewable Energy, Elsevier, vol. 187(C), pages 257-270.
    3. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    4. Zhang, T. & Zhang, Y.F. & Shi, Z.R. & Li, Q.F. & Cai, J.Y., 2023. "Experimental study of a photovoltaic solar-assisted heat pump/gravity-assisted heat pipe hybrid system," Renewable Energy, Elsevier, vol. 207(C), pages 147-161.
    5. Dong, Yan & Wang, Fuqiang & Zhang, Yaqi & Shi, Xuhang & Zhang, Aoyu & Shuai, Yong, 2022. "Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure," Energy, Elsevier, vol. 238(PB).
    6. Xu, Qian & Yang, Gang & Wang, Ceyi & Liu, Zhiwei & Zhang, Xinyi & Li, Zhuorui & Lohani, Sunil Prasad & Zhao, Yanqi & Xiong, Yaxuan & Ding, Yulong, 2023. "Experimental study on the reinforcement of a gravity heat pipe based on a latent thermal functionally fluid," Energy, Elsevier, vol. 278(C).
    7. Ji, Yasheng & Yu, Min & Wang, Lin & Lu, Lin & Zhou, Jinzhi, 2024. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system: Numerical dynamic modelling and effect factors analysis in dual-function operation mode," Renewable Energy, Elsevier, vol. 229(C).
    8. Shahsavar, Amin & Arıcı, Müslüm, 2023. "Energy and exergy analysis and optimization of a novel heating, cooling, and electricity generation system composed of PV/T-heat pipe system and thermal wheel," Renewable Energy, Elsevier, vol. 203(C), pages 394-406.
    9. Zhang, Tao & Zhang, Yufan & Shi, Zhengrong & Pei, Gang & Cai, Jingyong, 2022. "Preliminary investigation on the switching time of a photovoltaic solar-assisted heat-pump/heat-pipe hybrid system," Applied Energy, Elsevier, vol. 324(C).
    10. Li, Rui & Li, Jinping & Zhu, Junjie & Liu, Xiaomin & Novakovic, Vojislav, 2023. "A numerical and experimental study on a novel micro heat pipe PV/T system," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    2. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    3. Ersöz, Mustafa Ali, 2016. "Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe," Renewable Energy, Elsevier, vol. 96(PA), pages 244-256.
    4. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    5. Abdulhamid Atia & Fatih Anayi & Min Gao, 2022. "Influence of Shading on Solar Cell Parameters and Modelling Accuracy Improvement of PV Modules with Reverse Biased Solar Cells," Energies, MDPI, vol. 15(23), pages 1-19, November.
    6. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    7. Yi Ding & Qiang Guo & Wenyuan Guo & Wenxiao Chu & Qiuwang Wang, 2024. "Review of Recent Applications of Heat Pipe Heat Exchanger Use for Waste Heat Recovery," Energies, MDPI, vol. 17(11), pages 1-28, May.
    8. Kim, Sunuk & Oh, Han Jin & Han, Sang Ju & Ko, Han Seo & Shin, Youhwan & Shin, Dong Ho, 2022. "Development of black-ice removal system with latent heat thermal energy storage and solar thermal collectors," Energy, Elsevier, vol. 244(PA).
    9. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    10. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    11. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Rittidech, S. & Donmaung, A. & Kumsombut, K., 2009. "Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV)," Renewable Energy, Elsevier, vol. 34(10), pages 2234-2238.
    13. Tihomir Betti & Ante Kristić & Ivan Marasović & Vesna Pekić, 2024. "Accuracy of Simscape Solar Cell Block for Modeling a Partially Shaded Photovoltaic Module," Energies, MDPI, vol. 17(10), pages 1-19, May.
    14. Zheng, Senlin & Qiu, Zining & He, Caiwei & Wang, Xianling & Wang, Xupeng & Wang, Zhangyuan & Zhao, Xudong & Shittu, Samson, 2022. "Research on heat transfer mechanism and performance of a novel adaptive enclosure structure based on micro-channel heat pipe," Energy, Elsevier, vol. 254(PB).
    15. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    16. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    17. Li, Jinping & Wang, Hongyang & Liu, Xiaomin & Zhu, Junjie & Novakovic, Vojislav & Karkon, Ehsan Gholamian, 2024. "Study on the effects of acetone and R141b on the performance of micro heat pipe PV/T systems," Energy, Elsevier, vol. 297(C).
    18. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    19. Li, Jiarong & Li, Xiangdong & Wang, Yong & Tu, Jiyuan, 2021. "Long-term performance of a solar water heating system with a novel variable-volume tank," Renewable Energy, Elsevier, vol. 164(C), pages 230-241.
    20. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.