IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp233-242.html
   My bibliography  Save this article

Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system

Author

Listed:
  • Zhang, Tao
  • Yan, Zhiwei
  • Pei, Gang
  • Zhu, Qunzhi
  • Ji, Jie

Abstract

Loop thermosyphon (LT) is a two-phase closed device that provides an alternative solution to overcome the freezing problem associated with the traditional photovoltaic/thermal (PV/T) system. The overall performance of a LT-PV/T system is significantly affected by volume-filling ratio. To reveal this effect, a prototype of the LT-PV/T system was designed and constructed in this paper; and long-term outdoor tests under 24%, 32%, 40% and 48% volume-filling ratios were carried out. The results show that the daily average photothermal performance of the LT-PV/T system presented a trend of increased first and then decreased with the volume-filling ratio increasing on the selected sample days. The highest performance was generated under the 32% filling condition. The solar evaporator had an even temperature distribution when the volume-filling ratio was no less than 32%; the temperature difference of the solar evaporator decreased with the volume-filling ratio increased, the values were 1.5 °C, 1.2 °C and 0.6 °C, respectively. Performances of the collector and system were linear fitted based on the outdoor tests, the fitting results showed that both of them shared the same variation trend, the optimum volume-filling ratio lied in between 32% and 40% of the whole system volume, but nearer to 32%.

Suggested Citation

  • Zhang, Tao & Yan, Zhiwei & Pei, Gang & Zhu, Qunzhi & Ji, Jie, 2019. "Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 143(C), pages 233-242.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:233-242
    DOI: 10.1016/j.renene.2019.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T Zhang & Q Z Zhu & W He & G Pei & J Ji, 2017. "Annual performance comparison between solar water heating system and solar photovoltaic/thermal system—a case study in Shanghai city," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(4), pages 420-429.
    2. Ji, Jie & Lu, Jian-Ping & Chow, Tin-Tai & He, Wei & Pei, Gang, 2007. "A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation," Applied Energy, Elsevier, vol. 84(2), pages 222-237, February.
    3. Fu, Huide & Li, Guiqiang & Li, Fubing, 2019. "Performance comparison of photovoltaic/thermal solar water heating systems with direct-coupled photovoltaic pump, traditional pump and natural circulation," Renewable Energy, Elsevier, vol. 136(C), pages 463-472.
    4. Youngjin Choi, 2018. "An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions," Energies, MDPI, vol. 11(7), pages 1-13, June.
    5. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    6. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    7. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    8. Yandri, Erkata, 2017. "The effect of Joule heating to thermal performance of hybrid PVT collector during electricity generation," Renewable Energy, Elsevier, vol. 111(C), pages 344-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhaomeng & Ji, Jie & Li, Jing & Zhao, Xudong & Cui, Yu & Song, Zhiying & Wen, Xin & Yao, TingTing, 2022. "Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale applicat," Renewable Energy, Elsevier, vol. 187(C), pages 257-270.
    2. Ji, Yasheng & Zhou, Jinzhi & Zhao, Kaiming & Zhang, Nan & Lu, Lin & Yuan, Yanping, 2023. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system under different climate conditions: Electrical and thermal assessment," Energy, Elsevier, vol. 278(PB).
    3. Li, Zhaomeng & Ji, Jie & Zhang, Feng & Zhao, Bin & Xu, Ruru & Cui, Yu & Song, Zhiying & Wen, Xin, 2021. "Investigation on the all-day electrical/thermal and antifreeze performance of a new vacuum double-glazing PV/T collector in typical climates — Compared with single-glazing PV/T," Energy, Elsevier, vol. 235(C).
    4. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    5. Zhang, Tao & Zheng, Wenjie & Wang, Liuya & Yan, Zhiwei & Hu, Mingke, 2021. "Experimental study and numerical validation on the effect of inclination angle to the thermal performance of solar heat pipe photovoltaic/thermal system," Energy, Elsevier, vol. 223(C).
    6. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    7. Tan, Peng & Xiao, Xu & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Photo-assisted non-aqueous lithium-oxygen batteries: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    9. Zhang, Tao & Cai, Jingyong & Wang, Liuya & Meng, Qingliang, 2022. "Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    3. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    4. Si, Pengfei & Feng, Ya & Lv, Yuexia & Rong, Xiangyang & Pan, Yungang & Liu, Xichen & Yan, Jinyue, 2017. "An optimization method applied to active solar energy systems for buildings in cold plateau areas – The case of Lhasa," Applied Energy, Elsevier, vol. 194(C), pages 487-498.
    5. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    6. Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
    7. Kostic, Lj.T. & Pavlovic, T.M. & Pavlovic, Z.T., 2010. "Optimal design of orientation of PV/T collector with reflectors," Applied Energy, Elsevier, vol. 87(10), pages 3023-3029, October.
    8. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    9. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    10. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    11. Darya Andreeva & Darya Nemova & Evgeny Kotov, 2022. "Multi-Skin Adaptive Ventilated Facade: A Review," Energies, MDPI, vol. 15(9), pages 1-26, May.
    12. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    13. Diallo, Thierno M.O. & Yu, Min & Zhou, Jinzhi & Zhao, Xudong & Shittu, Samson & Li, Guiqiang & Ji, Jie & Hardy, David, 2019. "Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger," Energy, Elsevier, vol. 167(C), pages 866-888.
    14. Bayrak, Fatih & Abu-Hamdeh, Nidal & Alnefaie, Khaled A. & Öztop, Hakan F., 2017. "A review on exergy analysis of solar electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 755-770.
    15. Li, Ming & Ji, Xu & Li, Guoliang & Wei, Shengxian & Li, YingFeng & Shi, Feng, 2011. "Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system," Applied Energy, Elsevier, vol. 88(9), pages 3218-3227.
    16. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    17. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    18. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
    19. Chen, Fangliang & Yin, Huiming, 2016. "Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel," Applied Energy, Elsevier, vol. 177(C), pages 271-284.
    20. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:233-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.