IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124021141.html
   My bibliography  Save this article

Optimization on the structure and filling ratio of a flexible separate heat pipe applied for tracking-type photovoltaic/thermal systems

Author

Listed:
  • Zheng, Ling
  • Cao, Jingyu
  • Peng, Jinqing
  • Lu, Zaikang
  • Hong, Xiaoqiang
  • Cuce, Erdem
  • Liu, Wenjie
  • Pei, Gang
  • Ji, Jie

Abstract

The utilization of photovoltaic/thermal (PV/T) systems with separate heat pipes holds significant potential to improve solar energy efficiency by addressing issues like winter freezing and scaling. However, challenges such as frame shading due to increased insulation needs could hinder overall efficiency. In the previous study, a novel flexible separate heat pipe (FSHP) employed in the tracking-type PV/T system was introduced, effectively avoiding the effects of frame shading. This research aims to further optimize the structure of the flexible separate heat pipe through experiments, exploring the impact of factors such as the diameter and material of the adiabatic pipes, evaporator-condenser height difference, and filling ratio on the thermal performance. Furthermore, the study will delve into the system's thermal performance at dissimilar solar irradiance and side-altitude inclination angles. The experimental results demonstrate that the enhanced structure significantly boosts thermal efficiency, stabilizing it between 69.37 % and 79.71 %. This study offers a fresh perspective for enhancing the performance of the FSHPs and explores their potential for broader solar energy use.

Suggested Citation

  • Zheng, Ling & Cao, Jingyu & Peng, Jinqing & Lu, Zaikang & Hong, Xiaoqiang & Cuce, Erdem & Liu, Wenjie & Pei, Gang & Ji, Jie, 2025. "Optimization on the structure and filling ratio of a flexible separate heat pipe applied for tracking-type photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021141
    DOI: 10.1016/j.renene.2024.122046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124021141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Huicong & Zhang, Jie & Li, Yuehao & Liu, Hao & Wang, Yinfeng & Li, Guiqiang & Zhu, Yuezhao, 2023. "Heat transfer and two-phase flow of a metal foam enhanced horizontal loop thermosyphon for high power solar thermal applications," Energy, Elsevier, vol. 283(C).
    2. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    3. Tang, Ningning & Zhang, Yuning & Niu, Yuguang & Du, Xiaoze, 2018. "Solar energy curtailment in China: Status quo, reasons and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 509-528.
    4. Yu, Min & Chen, Fucheng & Zhou, Jinzhi & Yuan, Yanping & Fan, Yi & Li, Guiqiang & Zhao, Xudong & Wang, Zhangyuan & Li, Jing & Zheng, Siming, 2022. "Experimental investigation of a novel vertical loop-heat-pipe PV/T heat and power system under different height differences," Energy, Elsevier, vol. 254(PA).
    5. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    6. Zhang, Tao & Zhang, Yufan & Shi, Zhengrong & Pei, Gang & Cai, Jingyong, 2022. "Preliminary investigation on the switching time of a photovoltaic solar-assisted heat-pump/heat-pipe hybrid system," Applied Energy, Elsevier, vol. 324(C).
    7. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    8. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    9. Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
    10. Wang, Yunyun & Pei, Gang & Zhang, Longcan, 2014. "Effects of frame shadow on the PV character of a photovoltaic/thermal system," Applied Energy, Elsevier, vol. 130(C), pages 326-332.
    11. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    12. Solanki, S.C. & Dubey, Swapnil & Tiwari, Arvind, 2009. "Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors," Applied Energy, Elsevier, vol. 86(11), pages 2421-2428, November.
    13. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    14. Zhang, Xingxing & Zhao, Xudong & Xu, Jihuan & Yu, Xiaotong, 2013. "Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system," Applied Energy, Elsevier, vol. 102(C), pages 1229-1245.
    15. Zhang, Tao & Yan, Zhiwei & Pei, Gang & Zhu, Qunzhi & Ji, Jie, 2019. "Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 143(C), pages 233-242.
    16. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Sahu, Bikash Kumar, 2016. "Solar energy developments, policies and future prospectus in the state of Odisha, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 526-536.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tao & Feng, Shijing & Zhai, Jinming & Shi, Zhengrong & Ji, Jie, 2025. "Experimental study on the switching logic of a photovoltaic solar-assisted loop thermosiphon /heat pump hybrid system in enthalpy difference laboratory," Renewable Energy, Elsevier, vol. 239(C).
    2. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    3. Yu, Min & Zhu, Xiaoling & Li, Mingjun & Zhao, Xudong & Yuan, Yanping, 2025. "Impact of working fluid filling ratio on the performance of a micro-channel loop heat pipe based solar PV/T heat and power system," Energy, Elsevier, vol. 317(C).
    4. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    5. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    6. Yao, Huicong & Zhang, Jie & Li, Yuehao & Liu, Hao & Wang, Yinfeng & Li, Guiqiang & Zhu, Yuezhao, 2023. "Heat transfer and two-phase flow of a metal foam enhanced horizontal loop thermosyphon for high power solar thermal applications," Energy, Elsevier, vol. 283(C).
    7. Li, Zhaomeng & Ji, Jie & Li, Jing & Zhao, Xudong & Cui, Yu & Song, Zhiying & Wen, Xin & Yao, TingTing, 2022. "Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale applicat," Renewable Energy, Elsevier, vol. 187(C), pages 257-270.
    8. Ji, Yasheng & Zhou, Jinzhi & Zhao, Kaiming & Zhang, Nan & Lu, Lin & Yuan, Yanping, 2023. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system under different climate conditions: Electrical and thermal assessment," Energy, Elsevier, vol. 278(PB).
    9. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    10. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    11. Li, Jinping & Wang, Hongyang & Liu, Xiaomin & Zhu, Junjie & Novakovic, Vojislav & Karkon, Ehsan Gholamian, 2024. "Study on the effects of acetone and R141b on the performance of micro heat pipe PV/T systems," Energy, Elsevier, vol. 297(C).
    12. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    14. Li, Jinping & Niu, Mengyao & Liu, Xiaomin & Novakovic, Vojislav & Dai, Jingbo & Huang, Juanjuan & Kong, Lingxuan & Zhang, Dong & Li, Xiaoxia, 2023. "Experiment study on heat transfer enhancement of micro heat pipe PV/T by Reynolds number improvement," Energy, Elsevier, vol. 282(C).
    15. Zhang, Tao & Cai, Jingyong & Wang, Liuya & Meng, Qingliang, 2022. "Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe," Energy, Elsevier, vol. 238(PC).
    16. Ji, Yasheng & Yu, Min & Wang, Lin & Lu, Lin & Zhou, Jinzhi, 2024. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system: Numerical dynamic modelling and effect factors analysis in dual-function operation mode," Renewable Energy, Elsevier, vol. 229(C).
    17. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    18. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    19. Yu, Min & Chen, Fucheng & Zhou, Jinzhi & Yuan, Yanping & Fan, Yi & Li, Guiqiang & Zhao, Xudong & Wang, Zhangyuan & Li, Jing & Zheng, Siming, 2022. "Experimental investigation of a novel vertical loop-heat-pipe PV/T heat and power system under different height differences," Energy, Elsevier, vol. 254(PA).
    20. Buker, Mahmut Sami & Riffat, Saffa B., 2015. "Building integrated solar thermal collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 327-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.